THE CMDIMTIOU OF MULTIPLE ROBOTIC MANIPULATORS(U)
ARKY N I..;TMW PERSONNEL CENTER ALEXANDRIA VR R F YOUNG

OO <] X TE XTSI X
A ¥ T T R R R e A IR TR U T R N T TR O LS

= An e o m

-

e

e

-

wataTa S

Splist D J

)

I

I
I

2-8
=
L]

sy 9,07 Bad 440" 00 €0) Gnd

!
=

=

s

=

T e e .

ol g

P4
-

o NN -

RS
-l

rrer

PP Y

TR P TN DT LAV LML M WA W W N PN LTI BN al M LN N TR X N R R AR KRN IR R oK PTIIT) o9 ey

ONG FILE COBY 2

THE COORDINATION OF MULTIPLE ROBOTIC MANIPULATORS Ny

AD-A190 869

Reed F. Young, 1LT b
HQDA, MILPERCEN (DAPC-OPA-E)

200 Stovall Street [:) I I(i
Alexandria, VA 22332 '§

ELECTE
JAN 2 8 1988
R
D
\ -2
11 Dec 87
Approved for public release
1y 2

DISTRIBUTION STATEMENT A

Approved for public releasef
Distribution Unlimited

A thesis submitted to Duke University in partial fulfillment £
of the requirements for the degree of Master of Science A

88 1 26 021 -

n
...... . T > T e K " A @ - o
........ .;__- TP AT N T T T S ‘. g : " ."~.\l~ u"\I\ -~ \ f Wi - \ * . ‘:e‘". X X ‘.!.“.\.:!.

R A T O R R O O D D T ORI R K O R O R O T O, O T SO O R O, O O VO OV MM CONOTON P R

Ty T Bu)
"-{‘ "' ;"I{I{

.

e e
' I. l"f‘o‘_“rf‘l'

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188

Exp Date Jun 30, 1986

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

DUKE UNIVERSITY

6¢c. ADDRESS (Gity, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Durham, NC 27706

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (/f applicable)
US Army (TEP Program)
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Classification)

THE COORDINATION OF MULTIPLE ROBOTIC MANIPULATORS

12. PERSONAL AUTHOR(S)
YOUNG, Reed Fisher

13a. TYPE OF REPORT 13b. TIME COVERED 14_DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
Master's Thesis FROM Aug. 86 TOMay 88 | 1987 Dec. 11 _174

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GRQUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

,_In this thesis, the problem of the coordination of multiple robots is investigated at length. Included in

e discussion are the position control, path planning, and collision avoidance strategies involved in the control

f two robots nutually holding an object. The theories and algorithms presented in this thesis are tested and
inplemented in the conputer simulation*CoordSim.™

Major results from this thesis include a verification of the resolved position control theory as it drives the

robots to any position and orientation. Also, a concateration and adaptation of various single robot theories 1is
de and introduced as the”"Striving Technique."s This solution is a conplete movement algorithm which drives the
_ robots mutually holding an object through a field with obstacles. The algorithm also generates a path function |Q
iven only the start and end positions and orientations. Finally, the concepts of the’"coordinated work envelope™ |
ngi "twisting collision" are derived and discussed. (e Bpmes) Compn ’jr’ ke

; I's
20 DISTRIB JTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

X8 uncLassiFiepuNLMiTED [SamMe AS RPT [J OTIC USERS
223 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
DD FORM 1473, 84 MAR 83 APR edition may be used unt:l exhausted SvEQ«B_I_TY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

AAMANNNANACENANAN AL R AN A B LA ML - "y ! AN "mw&mﬁﬂ

RN SUPLE FOI SO PO LM S AT N U WA U UN LR ST Vot tat ey Gap ¢ 0 09 g gt 9,0°6. 008"’ AR TN IOy PO OO RAE

THE COORDINATION OF MULTIPLE ROBOTIC MANIPULATORS

Yy Reed F. Young

! Department of Mechanical Engineering
: and Materials Science

Duke University

i:o. Date: Q@CUMW AR 1987 Accesion For .

[) .
= Approved: g;f'lg $:é:\&g g

~

»]

N Urnannou-.ced 0l
N

“

Jostifigar
‘:. A

p Devendra P. Garg, Supervisor BV”“..“mmm”mmvmw_m4

e e e e e e e

ey
; P e !

K - . ;
AN LV 1 4

. /7 N »
, __~f;;L4F‘éL Hlo2¢0 (e’ s : R
)) : i
Al

i
i
.. L”,“,l

A thesis submitted in partial fulfillment of the \ ..., .
requirements for the degree of Master of
Science in the Department of Mechanical Engineering

ot and Materials Science in the

L0 Graduate School of Duke University

1988

ey "’ DS I U SN n!" 'o s \.0‘ al'q o A% W ety l'. (0 l'.

o
IS St S RO

ABSTRACT

In this thesis, the problem of the coordination of

' multiple robots is investigated at length. 1Included in the

"R I

discussion are the position control, path planning, and

’ collision avoidance strategies involved in the control of

® o e

W two robots mutually holding an object. The theories and

I .= -

algorithms presented in this thesis are tested and

- -

implemented in the computer simulation "Coordsim".

| Major results from this thesis include a verification

of the resolved position control theory as it drives the

s P T T

robots to any position and orientation. Also, a

-~

) concatenation and adaptation of wvarious single robot Y

4 theories 1is made and introduced as the "Striving

Technique"”. This solution is a complete movement algorithm

v which drives the two robots mutually holding an object "

9 through a field with obstacles. The algorithm also Q
L X

\J
: generates a path function given only the start and end {
| positions and orientations. Finally, the concepts of the h

-

"coordinated work envelope"” and "twisting collision" are

derived and discussed.

[
I e e -

g

hd

}

3185 A T S, S S S TR, A L TR L S A VRS Ve 5l

0 920!

. 4.
(]

1 ate a5 a2 2 0 w2 "0 a8 a'h VA" AR nbA" <¥8 al \ ata’ a¥A RIS PR T T G W P T O O I K AT,

ACKNOWLEDGEMENTS

I would foremost 1like to thank my advisor, Dr.
Devendra P. Garg, Professor of Mechanical Engineering, for
all of his effort, help, and guidance throughout this work.
I would also like to thank my family for the support and

encouragement they have given me.

My gratitude to the United States Army for the funding
of my master's education. I can only hope to serve them as

they hav~ served me.

Finally, my thanks to Dr. C. M. Harman and Prof. Jack

Rebman for their input and participation on my committee.

You have all made it possible for me.

T TC rTTINTY

RN A A R I T A LR AV AU RY IFe\ TR VRN UV U S U AN U UV ORI TOC A R R 0 920 Ml $00 028 0,10 Al . B 588 0 N A 8 ‘ q '.'.

DEDICATION

This thesis is dedicated to all of my friends who made L
my stay here at Duke University such an enjoyable one and A

especially to Carmen--you made it all that much better. y

AR W ol g

o I o o

iv

nrir e

'~
-

]
-ng

- [T 1S T IS ¥ L LW W g G T Ty T g P T - -a AL R A g 8 AL et LR U VRS N T P
s e, s S R) ""' o s"‘.r "' a ‘\"&. v _.. At A V‘ ; o ~"‘ .|.o‘ N ""' "\""

-

g gt vy ata et R et 2 gy

Y0 al b Nal Vet N A i0a ke BVs 48 58, AN B X VU, W N VL Ny TR U I O I

TABLE OF CONTENTS

ABS T RAC T . . ittt ittt ittt tneeacesssnsasononnneceeneesse ii
ACKNOWLEDGEMEN TS . & &t i et ettt veeesoanessonsecennnneons iii
DE D T AT TON S .t it ittt enooeceeososassossoscsoeeesoesnenas lv
LIST OF FIGURES . ..ot iertereeneeeonoecscencenocenees vii
NOMENCLATURE . .t i ittt et eerenecuncsosocoacnocaonconsse viil
CHAPTER I INTRODUCTION. ..o vverenseeeacconnonnsocoes 1l
1.1 Motivation for Study......oeee.. Ceeca e 1
1.2 Outline of ThesisS......v' e ereeeneennnnnnes 1
CHAPTER II BACKGROUND IN COORDINATION. ... ' :cueuecnsns 4
2.1 Introduction.........ieeinneeenenoonsnnnnas 4
2.2 Background...........ieeeeocececncnacaaaseaas 4
2.3 Multiple Robot Control.......veeeeenenennsns 7
2.4 Justification of Coordinated Robots....... 11
2.5 Difficulties Encountered in
Coordinated RODOLS.t iinereeeeannns 14
2.6 Work Envelopes of Coordinated Robots...... 15
2.7 Applications........c.iiiiiinieinnncennanns 19
2.8 Available Algorithms and
Scheme Prototypes......ciieeriieneonannnnn 21
2.9 Concluding StatementsS.......ooeeeeeeeeennnn 24
CHAPTER III COLLISION AVOIDANCE IN
COORDINATED ROBOTS .. .o cvtteeecocennnans 26
J.1 Introduction........vieecencenncnacnncnnaes 26
3.2 Stationary Obstacle Avoidance............. 26
3.3 Avoiding Obstacles in Motion.............. 30
3.4 Navigation of Robots Through
UnKknown Terrain......e.eeeeeececacecennnss 32
3.5 Mutual Collision Avoidance of
Coordinated RoOboOtS. ... it eeieenennenenns 33
3.6 Concluding Statements.....c..eeueinnneeenas 38
CHAPTER IV PATH PLANNING IN COORDINATED ROBOTS..... 39
4.1 IntrodQuUcCtion.......ciiieeeeecnconnnncannas 39
4.2 Path Planning in Coordinated Robots....... 40
4.3 Available Algorithms........oeeeeireennenene 44
4.4 Two-dimensional Approaches........ceeeeu.. 49
4.5 Concluding StatementsS.......cvveveoneenses 56
CHAPTER V SYSTEM MODELING.eteeeeeceeroccnsonses 58
5.1 Introduction.........cuiiieirenineceocncannnn 58
5.2 Hardware Modeling.........c.euieevveoaneenns 60
5.3 Transformations for Coordinated Robots....62

- -
ot o

"y ¥ _5_a

b o

] "1."1

\ \]
v b

B

)

i

"
Y
A

..... N % AN e e o A A A A A" A A A A T R Y " A e e

N L e e e e 2 e M e e e e RN e S s

"Gl D R 0,0 o R g G VAR Al b Vb bl Vol Bad B2 ¥}’ 80 (2 Su® Uoh dab ¥ub a0 Snd uh . p ¢4 O

5.4 Collision Avoidance and Path

Planning Algorithms.......veeveeiieeeennn 70
5.5 Concluding Statements..........veeeeeenenn 79
CHAPTER VI COMPUTER SIMULATION AND GRAPHICS...... ..80
6.1 Introduction.........iieeteeeeonncocnocons 80
6.2 Program Features........oceeeeocencoose eess81
6.3 Utilization of Modeling Techniques........ 85
6.4 Subroutine Definitions........ciieeeueees 100
6.5 Concluding Statements.........c.ccvvecees 104
CHAPTER VII RESULTS AND CONCLUSIONS.....c:veeeeasse 106
7.1 Discussion of Results.......cvceveeceeecs 106
7.2 CONClUSLIONS. ... cieeencecoseccsosacsecsoosscs 112
7.3 Suggestions for Future Work......e.ceeeeee.. 113
REFERENCES . ¢t ittt vttt eeeceresssassoscscsssssoocseass 115
APPENDICES .ttt ittt v teevecanosssosnstsacsssscsacccascasss 118
APPENDIX 1 Program Listing.......ccecieeeceen 118
APPENDIX 2 User's Guide to CoordSim.......... 163

vi
N AR G L S R G £ G S i R S N R R O B R R R N A RS AR

KRR

P O ICIC IO Y o At

VTR W ‘\
. t'

AL T G g gt S0 0 g g g g ke . I TG N P R T T T T O O O i O T O O ™ O O " O R O OV K™

1y
lk||
8
)’i‘
o
l"
N
5? LIST OF FIGURES
i
2.1 Coordinated Work Envelope.......ccueeennnsn. . ..17
1.8
L) i!
Sh 3.1 Configuration Mapping in Translation...... c-es.28
)
5“ 3.2 Polygon Representation of Obstacles............30
Y
3.3 Twisting Collision............ c et es e eee e ——
oS
W) 4.1 Schematic of an Activity Controller............ 45
& 4.2 Implementation of a Distance Function..........50
W
4.3 Local Dynamic Path Generation.......... e e 53
e
Y
Q: 4.4 sShadow and the Virtual Obstacle........ cecees..55
+
X
)
w 5.1 The Unimation PUMA Robot....... e e ..61
1‘.
R 5.2 Representation of Satellite and
:, Reference Frames.........ccuiiriteernnanconnns .63
Y
@j 5.3 Transformation Vectors and Coordinate Frames...65
1 A]
2‘ 5.4 Configuration MappPing....coeeeeereeneenneononens 72
*E 5.5 Robot Nodes....... C e et e st ettt e e 74
X,
$§ 6.1 Program OUtPUL.ttt eeennnsncoencss e eeae 82
o
by” 6.2 ROULINE L. neuenenonnonennnnnnnnnnas 86
;: 6.3 Routine 2........00iiiiieeneennns et eete e 88
LY
N 6.4 Routine 3........... ettt ti ettt 90
4
&
R 6.5 Flowchart of Routine 3.......c.uvieivneneennn91
- 6.6 ROULINE 4.uvvvnrermnneennnnnnnnn. e cee..92
__J
= 6.7 Flowchart of Routine 5.......... et e e ...93
- 6.8 Routine 6............. et e ve...94
o 6.9 ROULINE T..uv'ivuenrennnnneennennennn. PN 1
ﬁ: 6.10 Routine 8............. ettt it e e 97
- 6.11 Flowchart of Routines 7 and 8............. c.e...99
N
U
) .
i vil
0"
‘:" !
,‘a' |
2,
A
)

))
4 . 0%] \ D S 1% T T T L A
B DRI AR M e Y ey = = e Rt

FIPN] B R Y TS L N Y N ("- n O B r rri"f(' Ly’
74 "*f (.'N“'.l\“v "‘f '. .NJ ~.‘-‘

E g b b 809 eV e Ve 1 a R e a0 0 ataha et g) Y T Y IR T D TS U T AT S ORI TR YR 3 TV

- -
-

t)
[} 3
) “d
) 8.
! NOMENCLATURE !
: !
| 3
A projection of the satellite's z-axis onto the
, reference frame X
[}
',
’ AC Activity Controller ',
3
. X
. AP alternate point L
f F() a generalized function 2
i . ‘
b J Energy Function s
N projection of the satellite's x-axis onto the 23
. reference frame \
‘ i
: 0 projection of the satellite's y-axis onto the)
: reference frame s
? ¢
, P position of the satellite's origin in the f
b reference frame. :
. L]
b T standard transformation matrix b
t time
) u system input)
: "
& X state variables N
: o
[} .
x roll angle i
. ¢,
B pitch angle |
] r yaw angle i
g :]
‘ T finish time %
(. -
: g
'd .
< "3
’ o
. b
&
:]
. ';
N
¢ N,
' .
N . 3
. viii o
Q. 1
b .é
1 .
] .
B R A S e e T e e e e S e et e S0

T T R N N R D T T N O e

CHAPTER I

INTRODUCTION

1.1 Motivation for Study

One of the emerging areas of research in a rapid

advance of robotic technologies has been concerned with the

% coordination of multiple robotic manipulators. This o

technology proves to be very useful for many reasons as the

coordinated robot scheme has several capabilities which are

not found in systems utilizing only a single robot. These]

capabilities include factors such as: increased payload

irregularly shaped, or

manipulation of long, heavy,

rating;

unbalanced objects; and allowance for an extremely dynamic

work—-cell.

In this thesis, a complete position control algorithm

is presented in the "Striving Technique" which provides for

path planning, and collision X

the resolved position control,

avoidance of two coordinated robots simultaneously holding

Along with this technique, the concepts of N

an object.

coordinated work envelope and twisting collision are 3

introduced and discussed.

1.2 Outline of Thesis

Chapter 2 presents a literature search into the Q

various aspects of coordinated robot systems. Discussion

. -~ .
AASRSL LS CRL RO N
L4

N A d l('\"f'-_f' ~\f\f WS re \\), --r' -r“r‘ xl.-.‘(;.'i‘\f"-;.'(.~- -‘-'\';'u".'—\‘.\"-' PRI _'.;_..
B ML N Ll S ol D) v g e nduidaindadadlaneladad sl Ralamanlelaas

is included which describes applications, justification and

benefits of multiple robot systems, some potential problems
which may be encountered in the implementation of these
systems, and various algorithms which are available in
literature. Also, the concept of the coordinated work

envelope is introduced and discussed at length.

In chapter 3, a summary of collision avoidance
techniques in single robots is presented as well as means
by which these algorithms c¢an be adapted to control
coordinated robots. This chapter also introduces the
concept of twisting collision and methods for solving this

problemn.

Chapter 4 discusses the path planning of coordinated
robots, and presents available algorithms. This chapter
also contains a comparison between the concepts of path
planning and c¢ollision avoidance and how they c¢an be

combined in a control structure for the coordinated scheme.

Contained 1in chapter 5 is the system modeling
implemented in this thesis' work. Included are the
position control, path planning, and collision avoidance
algorithms which are actually implemented in the computer
simulation. Also, a description of the simulated robot

hardware is included.

el a3

SNy,

Chapter 6 describes the computer simulation CoordSim,
and how the program utilizes the algorithms presented in
chapter 5. The definition of the various program

procedures and routines used are also included.

The last chapter, chapter 7, discusses the results and
conclusions obtained from the testing performed in this
thesis. Along with this discussion, several suggestions
are made for work which could extend the knowledge gained

by this thesis' work.

Appendix 1 contains a detailed listing of the computer
simulation. Appendix 2 is a guide for potential users of

the simulation.

PR N, U S S VL S N S SIS

N N P I A N A N P N A R R T N A A A N N AN AN

YEEVS. AWV, AWy A

e e e e e ey

R iy

gy -=oN]

R

T P o

WXV s

A

W

-

1 CHAPTER II

Q’ BACKGROUND IN COORDINATION
e

AL

Q, 2.1 Introduction

ts' .

ﬁ, This chapter will provide background information in
o
,?j the area of robot coordination and control. In addition,
K

)
. a discussion of the motivation and practicality of
M coordination will be given. Some benefits and setbacks
yh that are characteristic of coordination as well as some
real world applications which have utilized more than one

%: robot will also be given. Finally, the discussion will
NS focus on the various algorithms which have been set forth
e
ot to control the desired motions.

"y
[¥ t:

1Y 2.2 Background
P

i
b~ Many of the same principles apply in coordination of
:: multiple robots, as do in the control of a single robotic
‘.'\

f: manipulator. The obvious difference is that instead of
e

w,

J? having to <calculate the joint angles and various paths of
e the single robot, one has to calculate these factors for
\l

Wyt

fb several coordinated robots, as well as calculate other
. ‘,\:
‘fl added complexities. These complexities include such things
;aﬁ as the avoidance of <collision with each other or insuring
i

5
e motion in wunison if the robots are to share a task
o

I-f

cooperatively.

e e o BRI s e M N 2B ' Nt e BN AT N e T AT TN 1 e T S A

-pad Oag’ RO XY g 80020 920 80 0 00 0 0l toh S0 g by Vol God et e LR A ‘B 0 "6 ah 0ol 0"l o L At 208 48 Ak g™ r . oy

1 The degree to which robots c¢can be considered in i
cooperation has been divided into three general categories.

These are; uncoordinated, loosely coordinated, and closely

J

coordinated (1, 2, 3]. Q
:i

The uncoordinated robots scheme implies the types of -,
systems which are most recognizable as the production or «ﬂ

assembly 1line robots; for example, systems which are
designed to paint or weld. These robots simply follow a Pt
pre-defined motion with no knowledge or concern about the 0
objects which may be present in their working envelopes.
In this sense the robot is completely blind to the
surroundings. However, for the simple, repetitive
functions which they are required to perform, this setup is

b, more than adequate.

PRI G SRR

Another classic characteristic of uncoordinated robots

=28

is the fact that they usually have non-overlapping work ‘

by

) envelopes. This is used as a safety precaution, since no Q
matter how well planned a motion is, there is always the ;?

&

possibility of <c¢ollision due to a malfunction or operator

)

error. Since the uncoordinated robots cannot communicate t.
with each other, separating their work envelopes 1is an ;'

AN

effective way of insuring that no collision takes place.)

2t

\ S
] Loose coordination is the name given to the scheme S
o)

whereby the robots maintain a dynamic communication link ?

r

¥
5 "
\l
y

{

5

o

0 TR, PO U N 0 Y AAAN TR AR L ST TS TR T I) - ‘
IOt I e St it s RO R R AR A AN A RN G (£ A WA WS I LG

L W, Y | 4
A ALY o

with a higher level intelligence device such as a computer.

Here two or more robots determine their own motions via a
set of commands that a coordinating computer gives to them.
At this 1level comes the first indication of some sort of
intelligent control. The coordinating computer monitors
the actions of the two robots and provides decisions as to
their progress. One also begins to observe overlapping
work envelopes with two or more robots sharing work space
in the process, and even working simultaneously on the same
workpiece since in this case there is an ability to prevent

collisions and determine mutual paths intelligently.

Since loose coordination is usually accomplished via
another controlling computer, there is an inherent time
delay caused by the extra data transmission. Thus, this
type of coordination is usually limited to projects such as
two robots operating in an alternating fashion performing
similar functions. A typical example may include a series
of fed parts where the communication is kept at a minimum.
It is also beneficial if the cycle periods of the overall
processes are large so as to allow enough time for those

communications to occur.

The third type of <coordination is called <close
coordination. It encompasses the field of two or more
robots truly communicating with one another and

simultaneously striving towards a common goal. Here one

. o - L . e A " "k A -
3 LN LA A A N VO T N O T A NN IO i C L W DA T MO o

PO N P PO RRCAE PR TV WU WA WA S N W Y W IO RS WO WA OC IO W RO VAID YU TN OT OV OV OV O

finds the robots sharing a direct communication link which
transmits information on factors such as location, force,
and speed constantly among the manipulators. The
controlling algorithms dynamically adapt to changes in the
environment such as obstacles, or even new processes
altogether. In this manner, the system acts in a
completely adaptive fashion towards any conflict situation
which may arise. Finding a solution to the close
coordination problem is a current topic of much research
interest. Most work 1is geared towards handling such
problems as gripping an object simultaneocusly using
multiple grippers or performing different processes on a

single workpiece at the same time.

2.3 Multiple Robot Control

Along with the various 1levels of coordination are
associated various ways in which to approach the problem of
control of the robots. New methods must be developed to
handle the control of several robots beyond the capacity of

their individual controllers [1].

Uncoordinated robots will not need much effort in the
way of advanced control beyond the capability of their own
controllers. Simple task planning and some provision for

appropriate timing and triggering usually suffices to

provide the system with enough information to carry out

x> g

-

h ol
f:iuyf:I"

R L sy .
ZAA™ N]

-

-~ .

PO T

conventional tasks such as welding or painting. However,

these types of systems are limited to relatively simply
tasks and usually do not have the capability for complex

movements and calculations.

In one method of control, Chimes [18] suggests that a
single controller may be used to drive the various joints
of all of the robots involved. For example, for two six
degree-of-freedom manipulators, a c¢oordinated controller
would provide signals for all twelve joint motors. Several
problems arise in this connection. First, the same
computing device must now perform over twice as many
calculations since there are now twice as many joint angles
and motor signals to solve for. Thus, there is a need for
twice as much time to perform these calculations and this
added time may degrade the overall performance of the
systen. Secondly, due to the limitations of the joint
angles, there 1is no concern with a collision occurring
since it is a physical impossibility for a robot to collide
with itself unless it exceeds its own constraints. With
another robot added, a new problem arises since assuming
that the two robots share a common workspace, now they can
interfere with each other's motions and collide. Thus, the
controller must be fitted with an automatic collision
avoidance mechanism which prevents the two manipulators

from coming in contact with each other. This extra

.
>~ - K oo NI o . - o - .- e - a e m . ~ R L
P S Ty, Gy L A LA AR o LA (O R N 1y

LT dUN b o A

P

407 0a? 8" 2% 0a% €2 Mal B¥ b 0% Rl 3.0 4 e 4" 8280 0'R & A" ", Ay aha ghe TN LS

-
iy ey

- —
- |

computation also takes additional time and again slows down

the overall speeds of the two manipulators.

a A possible solution to the problem mentioned above is
b to employ parallel processing techniques where an
d evaluation of the individual robot's Jjoint angles is
0 accomplished at the same time by different electrical
N devices. Thus, there are two computation machines working

on the same amount of data that was being manipulated by)
&
b
only one computer. This appears to be an easy solution but $
{
LY
U

the same problems of communication remain.

‘N A second method of control is to have the robots
o control themselves through their individual controllers

while simultaneously communicating with a coordinating

N device such as a computer, in a hierarchical scheme [19].

} From the definitions set forth, this method appears to be %
‘ analogous to the definition of the 1loosely c¢oordinated

'5 system presented earlier. The one major problem here is ;
;: involved again with the speed of the process. The process

. can soon become a lengthy one if for every motion a ;
i controller must first communicate with a central E
V4 coordinator and obtain permission to move as well as inform f
' the controller of its actions at each step. Thus, this |
5: scheme only lends itself to situations where most of the

:: processes can be achieved without much knowledge of the

j activities of the surroundings. The robot's own controller i
: 9 :
)

N :
(' A YT S A I T A RS AN ."’l._.\f.‘f\\-.ﬁ R A - '&),) Y VS A -.*\;.'-.;’-v‘

L

’ "o " __5:‘\ N"."- ',‘\' had "\-;,’b;".' ‘e "-'..'- '’

is able to make decisions with only limited communication
with the coordinator for factors such as parts location,
availability of shared tools, or breakdowns. As a
consequence of limiting communication, very little time is
spent in the actual communication between the devices and
the loose coordination can be achieved with little increase

in cycle time.

A process which is well-suited to hierarchical control
is event sequencing [31]. Event sequencing is commonly
found on routine assembly line operations where several
robots are arranged to sequentially work an a belt-fed
part. In this scheme, each of the robot's controllers is
connected to a central controller which monitors the
location of the parts and their progress. The only time
that a controller needs to communicate with the coordinator
is when it needs permission to start a process and to
indicate when it is finished with its present piece. 1In an
assembly operation, this structure is very attractive for
inventory control as well as for diagnostic intelligence
since each piece 1is <closely monitored throughout the
process and system characteristics such as bottle-necks or
throughput can easily be accessed by the coordinating
computer without disturbing the operation of the individual
manipulators. The individual robots also have quite a bit

of freedom to perform their tasks as they can work with no

10

T N T L e N o~ NN

O NN N N AN A A A I O SN T M MR AN N N

PR a0 I
L Sy x

™%

(%0
b
4
A’
A
*
)
’
4
g
r
)
W
o
L)
’
v
L Sad
'
7
Ry
\
IR |
WA

2\11).

Sl

)

¢ RGN

w

.
w4 8 X

» s

I}&I

Sl

55

e d S YASNN

AL W

-
-

“$at a0 g0 gat et (it g2t Na¥ (2t €at Ut 4at ge’

concern for their surroundings until a new part is to be
presented or the completed part is to be moved on to the

next station.

The third method of coordination consists of the
robot's individual controllers being able to talk directly
with one another. This mode requires the application of
true coordination where the motion of one robot is
constantly a function of the progress of its mate. Many of
the excessive time related problems are now alleviated
since there 1is no intermediary computer to slow down the
processes. However, this method requires algorithms which
are well-designed and very adaptable since each machine not
only has to be concerned with its own path generation and
progress, but it has to be conscious about its partner’'s
progress at all times. The algorithms must be very
adaptable to changes to the point of simulated intelligence
and must be able to handle the extremely dynamic situations

which are presented.

2.4 Justification for Coordinated Robots

In order for tomorrow's factory to be able to keep up
with competition from abroad and the consumers' high
demands, it will have to be able to find ways to
significantly reduce costs and operation times while still

improving the product's overall gquality. One of the ways

11

et At AT vy ey ol ARt At e et et m AT T m T a a A AT et e A E At m at
N A LN I AN AN Sy ALY \.\' \'\"\"\ A \\e\- VR oW, Lo

ek h A A & &

to solve these problems is to wutilize the technology of

coordination of robots.

There are many financial benefits of the multiple
robotic systems. For almost any robotic process, only 20%
to 30% of the setup cost is in the actual robots themselves
[4]. The remaining 70% to 80% is tied up in peripheral
devices such as conveyor belts, tool holders, and vices.
This means that whenever a new operation is implemented,
quite a bit of the start up cost must be incurred in the
procurement of peripheral devices. While the robots
themselves can be adapted to most any operation, the other
devices bought or built to support the robots are usually
very specialized for the job and cannot be easily adapted
to new functions. With two robots however, much of this
cost can be eliminated since the functions of the
peripheral devices are now accomplished by the utilization
of the multiple robots. 1In general, the robots are easily
adapted to new functions and can be set up to perform a
vast variety of holding or feeding functions. Therefore,
when new processes are implemented, only a program change
needs to be made with much less capital investment 1in

extraneous hardware [23].

There are many other benefits of the multiple robot
system as suggested by Grossman et al [21]. These systenms

can perform tasks which were perhaps impossible for only

12

(]

COA R R AN

CLLYYY S
o

¢:‘z'i'- -
o e oy

.

vt by Sag

VU 3037 LTS s] - > W - P) W ALW W oS e MW »w _ w, =
L 0y M A R G 0, 0, O N N i I iy r ey o P AL S e e P LV)

LR USRI

O N T ey, b0yt TR L0340 § 2 g -RUL AN At val.®,

one robot such as 1lifting a very heavy, irregular, or
oblong object. Many of the resources which were used by
only one machine can now be shared by several. These
shared devices include items such as floor-space or working
envelopes, material handling equipment, tools, and parts
feeders, Several of the process characteristics are also
changed. The cycle time of an operation can be reduced
since several robots work on a single work-piece instead
of just one. This increase in cycle time could also mean
that bottleneck processes in an assembly line could be

overcome [25].

The sharing of tasks also increases the reliability
of the overall system also. For example, if one of the
robots were to break down, the other could continue the
process perhaps at a slower speed, but the process would
not stop. In addition, choosing robots which have
different specialties and having them utilize each other's
benefits increases the potential for work of the overall
system. For example, one robot <could be a heavy-duty
machine to be used as a vice while its mate might be a
precision machine to be used in a drilling process. Thus,
a very versatile programmable fixture is developed which
greatly increases the variety of tasks that the work-cell

can accomplish.

13

o, s W U W W T e A% W,

-
‘.
.l' r

L)
V]

-
v

"

hr o

LA] Ay Y-
?JJ:J

&

‘g

% 5,

il ok of g ol o
R

“5 Y W ¥ X
7,

A NN 4
(;?fvvs.

A

Sy

5 Y

29

IARAAZ A A AN

AR Ay A e S R S T A T B T D oA,

OO

WU Y Y UV W NN RN N S UMYV L RN VRO YUY DR Y DWW I oYY L. 00 08 0 60 0.6 2a? Eat €a®

2.5 Difficulties Encountered in Coordinated Robots

Along with the many benefits of the multiple robotic
systems are also some disadvantages. However, these are

few and are usually outweighed by the benefits.

Since there are now several robots to be controlled,
there will be a problem in the speed of execution. Many
calculations must be performed in order to c¢ontrol the
movements of a single robot. This number will more than
double with the addition of another robot since now such
items as mutual collision avoidance as well as
communication must be dealt with. This problem has been
partially overcome through the use of parallel processing
and a hierarchical structure. However, with an increase in
the amount of hardware and software needed to drive a
coordinated system also comes a possible increase in cost

and system downtime.

One of the more complex problems presents itself
through the mechanical characteristics of the systen.
Since the work-cell in a multiple robot environment
consists of several devices, the accuracy to which a robot
can define it's own 1location becomes a very important
consideration. This accuracy is usually defined by factors
such as motor resolution and repeatability as well as a

load, possibly causing a mechanical deflection in the robot

14

» Jab fab fab B ¥

LA
o O Y X

S AE A
LN

»
Lt}
L3
3

A & &4, G 4

25

| LW XA

Y

A

»
o~ A
D "_l

o T

TR SR L

\ R T W ¢ pat & (X T\ f Jr® g a® . 0 “fat ‘$2% 02 It J . - ¥ ‘N (T W ja® -

- -y WL, W, O8N ath oW 2O JUR gt a%A. £ ™ P ot g 8 B oSl gl N g ey 0]

arm itself. These deviations from a desired position
affect the job performance since under these conditions new
problems arise such as a stress being applied to a mutually
held part. Since there will be a deviation from true
desired coordinates, a deflection or bending may occur in a
part leading to the extreme case of damaging the piece.
These problems can be solved through the use of such
complex systems as a wrist force sensor but there is a

definite trade-off between accuracy and cost.

There will also be a need for more complex path-
planning and collision avoidance algorithms. 1Instead of a
single robot avoiding a stationary object or even an object
in a pre-defined motion, the several robots must avoid each
other dynamically as well as any obstacles in their
workspaces, All of these new calculations as well as
communication steps add to the size and complexity of the
controlling algorithm, and thus, affect the motion speeds

and reliability.

2.6 Work Envelopes of Coordinated Robots

The calculation of the work envelope of the
coordinated robot scheme is a non-trivial problem since it
plays an important role in deciding the extent of all
motions that can occur in the system. Since the robots are

usually mounted at different 1locations, the work envelope

15

Al
\..‘;“ .‘_\._. A -_‘. R -,-; - ’. SATE S e -‘.-‘. -’.\J,-'.\-*v‘.'-.w',v-.\‘.“‘u‘l -J\..\J.\._'.‘_\ >

i

r
>

- .
L

o s

72

L)

v N

LR

2

¥

i A

¥

¢ <

Ere—

v

X
>

-

)

.

TALY

” .,'?

7,

% S 5

b)

. -

-8y,

o

L4 ‘('1', “ete

e P LR S
'P-{:n."_"

0}
"

. % ‘v s

LA

« %

LN

coordinated robot

of the

than the sum of the two
robot will not be

work envelope and

The object's

vice-versa.

scheme will be considerably less
robot's work envelopes since one

able to reach the far side of the other's

work envelope is defined as the locus of

points which <can be obtained by the coordinate system
located on the object (refer to figure 2.1). It is first
assumed that the robots are fully extended in order to
achieve the most distant set of points in the work

envelope.
configuration.
point of the extended
"extended radius".
can be

discussion.

The two
bounded by four curves
circular arc whose radius is
of robot 2 and one-half the
is also a circular arc whose
extended radius and one-half
centers of
base coordinate systenm.
and are traced under

object end points follow

r"r T T R T AT TR AT AT T A A J
Lo - 8 u B LY

This configuration is called the
The distance

arm

(refer to figure 2.1).

the midpoint

around the

N N N

"extended arm"”
between the base and the end

is a constant called the

Note that the individual work envelopes

separate or overlapping with no consequence to this

dimensional work envelope of the x--z plane is

Curve a is a
the sum of the extended radius
length of the object. Curve b
radius is the sum of robot 1's

the length of the object. The

these arcs are located at the particular robots

Curves ¢ and 4 are irregular arcs

of the object as the

work boundary of the

le

o N

PR TR
’

NS

e e mg ey e L
AT N A NS
GJ

AP
N

.-

DRI RN
w
PR
3

v
S

ER S A

=

o W

N KX XIS o PR

AN

}}:f".’i'
patt i)

NI 4

:5'.4.1, -4 ‘L‘~.(. T X |....- g (\l - _-— e .

- . - afe At UL AR N S Y,y LIS A A AR A . &4

K
K
A,

TN
f\' S,

300TaAu] HJON P33BUTPI00)
"2 aunbiy

LA S LY
nAp "

-
‘n.,.

adotanug
A0y 5,308(0

g fuepunog
N ® Wuwwmwmm\“v

N

Yo
W

>
i::ij
DA

~
R

p huepunog

ek

| 000y
Papualxy

¢ 0q0y
Papualx3

17

~» 'r\;r\-"’(‘\: "\1;‘.}’\1 -

—+

¥
i)’

et N
NG

v
»

h)
Y

o7

)
Q)
B
(D/
e I
a -L'l-s‘-

-' "l

L

L
Jh’\,ﬂ.

.Nf
)

%
2N
Yot
e ae s . . (o
individual robots. Since this exact same shape is produced
'ﬁ
as the work boundary in the x-y plane, the actual work]
{
envelope can be generated by spinning the x-z work boundary ~
e
around a line oriented parallel to the x-axis and traveling ?ﬂ
¢
(v}
through the geometric center of the shape.

A sample calculation is now presented to illustrate “ﬁ
the relative size of the work envelopes. Assume that the "
extended radius of both robots is one meter, the robot ‘Q

l‘.‘

bases are mounted two and one-half meters apart, and that '&
l‘|‘

1"

the held object 1is one meter long. If the robots' Qw
individual work-envelopes are assumed to be half-spheres *}
.I

the total volume of the sum of the work envelopes is: ﬁﬁ
”

U

Volume = 4/3 N x3 (2.1) ;

o

]

{

where "r" 1is the extended radius of the robots. If the xé
object's work envelope is estimated as the upper half of an ;T
ellipse~-like shape rotated about its long axis, the volume r{

‘r':“‘-‘,

o

would approximately be:

s

Volume = 2/3 M X1 Xz22 (2.2)

2y
(]

¥ 5

where "X;" is the long radius, and "xz2" is the short radius

v‘." “
» l'\.l“

" "

of the ellipse-like shape. For this example, "r" equals

i

one meter; therefore, the volume of the robot's combined

work envelopes is 4/3 N m2. Also, through measurement of a

&

scaled diagram, "x:" equals 3?/4 meters and "x:" equals 2 /3

2

18

o 0.!

e 5t st Tl T TR e Tt et st e A AT T R a M E At kmMa " A n "R R T . .
'..- \.‘.‘,ﬁ'_..‘ _‘f\' N\'\'NS\J\'\-'\ \\\v' "'\\w X V‘v“ L a . J\c’ X\)n ,(q‘ N N A AT A -‘.\ \

¥ "\'.F'l

N N W

AP, 798, "3 ¥,y

'.h." ')\ ‘\f‘l* ..:,);-._'ni"-);\ i'.‘\ -.Q.-'f"'..v)

meters producing a volume of 2/ M m2. This is an
estimation, but does emphasize the vast difference in the

volume of the work envelopes.

As the robots are mounted farther apart, the object's
work envelope decreases proportionately and it would seem
that mounting the robots close together would be optimal
situation. However, as the robots are mounted closer and
closer together, a cluttering of obstacles will occur due
to the robot joints and the bases. Thus, an optimal
solution can only be found when specific tasks, and
collision avoidance and path planning restrictions are
considered and the trade-offs between the object's work

area and the cluttering are weighed.

2.7 Applications

Several specialized wuses of <coordinated robots have
been mentioned in literature to include lifting very heavy
or 1long objects. One of the main advantages and
applications for the multiple robotic system comes in its

ability to be dynamically adaptable [3].

A dynamically adaptable system is a type of production
system which is able to change 1its function with very
little change in hardware. This change in function could
be necessary due to a variety of situations. One situation

would be an operation where the same type of function is

19

B e O T RV LT

Fod

S 2

TR
L
Aoty L%

P

L »

o

T

LS R AP X
. -

54NN

- = _s

LT T

vatuad el bt Vol Yot

h .M
":‘"n a0,

N

AART BN] W R % R RS I TS TS I I T NS N P TS I T T I e
WSyt ’\F\{' ’ * o. **‘Vk""*") A

“q, g 00 007 00 00t 0 0 0 0" g *3'a'% 2%’ ot Vo FUNG VLT O o s yeay e R 0 R he §'a ' Bt RN

performed on several different types of a similar product.
Examples of such systems would include a welding robot on
an automotive assembly line which can perform body welding
on a variety of randomly presented cars. Another situation
would be where the operation changes altogether. For
example, a setup in which a new product may have to be
manufactured utilizing the same machinery as was used for

the manufacture of the old product.

In normal circumstances both of these situations would
require extensive hardware and peripheral device changes.
With the implementation of a coordinated robotic systen,
the solution to these and many other problems can be
realized easily. Since the system emulates the functions
of the peripheral devices, a change in the make-up of those
devices will simply mean a change 1in the software of the
robots with very limited hardware changes, perhaps mainly

in the grippers or parts feeders.

The true utility and functionality of the coordinated
system 1is realized and can easily be identified as
dynamically adaptable, since in a much shorter period of
time and with much less difficulty, a new procedure with

varying requirements can be conveniently carried out.

20

A% A% 4% W 0% I‘al‘o N N

g WALS W 4 "'J" - - -
e '. s 1% Wy, o..' »n.o,

P T

o

e

XV

1

1.' Pl N

Pl
v

7 e

Lo
.
LI

(l.
»

e

Ly
-
2

T

’ e N
P

u\,,,%ﬂ.
LR A XA NN

L _AF

NIl N LS,
AL ML N

*h g

2.8 Available Algorithms and Scheme Prototypes

There are several mathematical algorithms which are
discussed below in order to provide some cognition as to
the controlling scheme of the coordinated robots. While
these methods do not 1indicate a specific programming
routine, they do provide a systematic procedure for a
programmer to follow while setting up the various

operations.

One of the most common of these algorithms is called
the master-slave relationship [5]. The basic premise of
this routine is to define one of the several robots as the
master and then base the movements and operations of the

other devices from the master's position and progression.

This method has proven to be very effective and
efficient in several different situations. First, the
slave can be directed to simply copy the exact motion that
the master is programmed to perform. This 1is a useful
control scheme 1in pick and place operations since both the
master and the slave robots can be programmed to perform
the same task burv - a time delay between the two cycles.
Thus, twice as ch work can be accomplished through the
same program si1 Te two robots perform a task in an
alternating fashi n. In the same sense, this application

can also solve the problem of bottle-necking as several

21

'Jl.r '-I'{..- " '-f""f_'-'.:-" '.'\‘.r.;f o '.r_‘.(\;," _:(,;a;.r_;.-;r{f.;-r\.v) .Q.'._.:‘ OGN -(‘.‘-r._ \..-r. oS . \\ T
. 5 g : BRI WTRE WATRWE W 0, B AN B Ty N !

W, e, o

N AT

TR S §, 00 el Yal Par fyl Ul Sah i 8 Vpy Ve tal ¥al ek ot sl et a€ el abe AV, R g ghe 8 geo Bha gio g%y g WY WYY YT ¢ 8o® 1a¢ a6 G

~

N
(A

robots can perform similar operations simultaneously and

speed up the cycle time of a particular station.

A second situation would be to have the second robot
generate a symmetric motion function relative to the first
robot, for example two robots turning a wheel. The master
would base 1its position function on the location of the
wheel and the desired angular speed. The slave would
simply calculate its motion as the master's reflection
through the middle of the wheel. This requires much less
calculation than if both robots were to calculate positions
relative to the wheel and thus 1lends itself to being an

operation to occur in real time.

Another situation would be synchronous motion where
the slave would perform a motion similar to the master's
but at some offset distance. An example of this would be
two robots carrying a long bar. The desired path of the
bar would provide the master with a path to follow. The
slave robot would simply follow the same direction and
orientation as the master knowing that it must first place
itself at a distance offset equal to the length of the bar.
The relative 1locations of the bases will not become a
hindering factor in the path generation since only the end
effector position and orientation need be known, not the

individual joint angles which would be a function of the

bases’' position.

"
-

:I :I '\"_’ ' "

NPT

0

STt

SLNNAES

»

v

1 & L}
S

1a¥ e a? 2% 4N

‘ol B

NV NRK YWY g W W e AR "L 20 BAL Al . ALl

The master-slave routines can be very effective for
simple or repetitive tasks but they may fail to perform
satisfactorily when complex motions are presented such as
movement to avoid obstacles. The slave tends to 1lack
information since it bases its motion on the motion of the
master and thus does not inherently recognize problems

arising in the surroundings.

A more complex and intelligent algorithm is one where
there are effectively two slaves and no masters. The
algorithm here stipulates that both robots have equal
intelligence and thus need to determine their own paths and
collision avoidance schemes independently from each other.
The input for determining these paths is based upon some
sort of external reference, perhaps the center of mass of
the carried bar, and thus acts as the master to lead the
slaves through the desired motion. This is the algorithm
which has been implemented in this thesis and will be

discussed in detail in a later chapter.

Another scheme is that of the Activity Controller ({6,
3]. This scheme 1is analogous to the hierarchy control
algorithms since work is divided up into a series of levels
with the underlying assumption that sequentially
intelligent functions are to be performed at increasingly
higher levels. The 1low intelligence functions such as

stepper motor signal generation occur at the lowest level

23

,
250
-t

.’u‘;-'r 3

" "o Y

n o

W‘I";’ﬁf‘:"’l‘. ‘. “."

oy .\ bt "-)\.

‘4*9{':}}1_,-(:, > ?"..-

A

L 3
A

YA

. XA
(s{w.:s'r%

«
> %

oL A® ¥
q{'v\'.~

v’
L

A T
o P e S

6

N
.'

%
o]
!
in the robot controller, path generation and c¢ollision ;
Z,
avoidance schemes occur at the next higher level in an on-

line computer, and more complex functions such as :'
F
]
coordination of multiple robots and supervisory control ;'
. . e’
occur at even higher 1levels perhaps in a mainframe ®
o
computer. !
:
‘\

This theory utilizes a hierarchical scheme but also N
adds some underlying assumptions to the intelligence of the 1y
motion. It makes allowances for much more complex o
Fh

F

functions and defines the various levels at which certain i
decision making processes are to occur. With this scheme N
..h
one has the power to simultaneously make decisions for *1
o
problems such as process scheduling, robot scheduling,)
optimization of sequences and even jobs themselves for o
particular robots as well as guidance through collision ¥
’
situations and recovery algorithms. A more detailed fV
discussion is provided in chapter 6. E
o

b

2.9 Concluding Statements :*

)

Coordination of multiple robotic arms is a relatively N
' 1

Y
recent topic of concern with most of the advancements ‘)
~

having been made in the past few years. The industry is "
starting to actually implement the truly coordinated *
>

machines in real world situations. With the development of I
o

inexpensive and very fast computers comes the ability to ?

)
3

24 hes
. 1

b

L,

hey

>

~
e A e At e e e N s .t e e e .
N N I I I A N A N I S A N AN A I N N A N AN S A O N A N AT A T T T P P R

';.“‘ bbb b . ¥ AT i & : ARlatisa Al A A Rt b Lafe i AR SR ghe oPR g gl o .'1"‘.;"‘.":'1'1'-}
%,
i“
et
e
0
b _ .
5, implement the 1lengthy and cumbersome algorithms needed to
o

intelligently control the several robots. It will not be
et unrealistic to dream of systems which <c¢an c¢arry out
1S
) extensive self maintenance or perhaps even become
1,
L LN

intelligent enough to determine their own motions through
l‘.-‘ - - . .
'i manufacturing processes with no "a priori" knowledge or
]i help from the humans.
>
0y This chapter has provided a general overview of the
\‘ . . . k]
;: coordination of multiple robotic arms.
-~
2

The discussion started with the general theory

concerning c¢oordination followed by the benefits and

-

. ‘- - ‘ "¢
O . 2
RRRERRS & SOz

setbacks involved with implementation of multiple robots
and concluded with a presentation of typical applications

and examples of some algorithms which have been developed.

.'A "' ,,A..-‘".

LA

WA
AR A

PPN XA
JI S

Lt =)..—:.)$I M

25 |

{ e G5

'.._‘-_1

Tl

P s ee

q'f .

P _ f\fs..-'_.. o

PR oo : R S AT - - R T . “ g
AR ___\-’\ .’ \-F\.__. _.J__/'".f\. \._.',. "";{;\J' \..\.)_. \

RS S ARSI (RN

0 ati et a4 2t a0 At a1 " a0t " B At Nt gt Rt 0% 8¢ 4°0.8"0 ¢ o 4 RN R R 9,.%4 ,) >y)

x

Ry CHAPTER II1I

) COLLISION AVOIDANCE IN COORDINATED ROBOTS

h |
;: 3.1 Introduction

Ny

* This chapter provides a synthesis of information

.

o derived from several published sources in the area of

N

o collision avoidance. It describes a chronological

’§ progression of the technology starting with a robot

¥Y avoiding a stationary object or objects, through avoiding ’

moving objects, and ultimately leading to two coordinated

o robots avoiding each other.

¢

o

} 3.2 Stationary Obstacle Avoidance

\l

- The task of having a robot aveid a stationary object

i: located within its work envelope can be usually

¥ accomplished through off-line scheduling. Alternatively,

" an operator could manually guide the manipulator through

',

f the task with a teach pendant, and record the man: pulator

&)

: sequence, keeping in mind that the obstacles must be

L, avoided. At that point the motions can be played back and

N f
’ parameters such as efficiency and cycle time can be

. evaluated and improved, if desired.

v

: For a variety of simple tasks, this technique is b
Ll ,
.: generally effective; however, there are two distinct

. disadvantages. First, the cost of the "teaching" process :
- .
. 26 y
.]
"’]
I' (]

v,

B A A A s T S T S TR LI et

-

N,

N ISR,

(L0 W Wy W W W W Wy Wi Wy $.0°8, "8,

is high since it must occur either on the assembly floor
where production 1lines must be stopped, or in a simulation
laboratory where the equipment itself may be expensive.
Secondly, there is always the risk of damaging the
equipment, the environment, or even injuring the operators.
The solution 1lies in the progression of computer graphics
and numerical analysis where different algorithms can be
developed and tested through simulation long before they
are implemented at the assembly line. Using this approach,
downtime is held at a minimum and any chance of accident or
damage can be realized in advance using the computer

simulation [7].

An efficient algorithm tested in a computer simulation
was set forth by Lozano-Perez in "Configuration Mapping"
[8]. In this scheme, the manipulator is shrunk to a point
and the objects are grown appropriately to account for the
shrinkage. Thus, as 1long as the manipulator point is out
of the grown obstacle region, no c¢ollision will occur.
Figure 3.1, which 1is taken directly from this paper,
illustrates their example of the mapping. Note that since
the object in this case is only translating, the objects

need only be enlarged on certain surfaces.

This process is justified due to an improvement in
speed of data processing. Instead of comparing each point

on the manipulator to each point 1located on the various

27

-------- SRy L L S P W R L Ly -
Lo S I' . o o -'.-‘. h_.\..- A -

A A A A S AR A A S S S

M W “u
b2

P F S PP
LS

.

.'¢¢$¢5

P XA

Py

»

et

A

-

A g g
e

X

-

'..' .A; Ly f,' YA

I‘-
2]

I- '-
oy

.
s

P A P

> ey

s

v
857 0a% 0e" et 1a? S pd fa? by, 1

objects (a 1large mass of data), one can simply compare the
single point of the shrunken manipulator to the enlarged
objects. However, there are also certain disadvantages

associated with this scheme. The main disadvantage is that

GROWN OBSTACLE

U

OBSTACLE

Figure 3.1
Configuration Mapping in Translation
if there are many objects located in a congested area, the
enlarging process may choke off all of the available

pathways for the manipulator to follow.

In light of the above potential difficulty, another
solution 1is referenced where instead of refining an

algorithm, a brute force ‘'"calculator" is developed where

28

T T N LN T A N A T T NN N T T
A , . F AT

e e e o Y AN N SN

the mass of data can be processed in real time. This was
realized through the utilization of a controller consisting
of sixty-four microprocessors whereby the on-line control
was accomplished through parallel processing [9). In this
process, an object's location and dimensions are provided
as input information. Through various path planning
algorithms, a suitable movement is determined and
implemented. Note that in this <case a starting point,
ending point, and obstacle characteristics can be
externally entered into the machine which <calculates

possible paths and implement the "best choice".

A method for significantly decreasing the amount of
needed calculations 1is to represent objects by simple
polygons such as circles, squares, and trapezoids (refer to
figure 3.2). Thus, the object 1itself is defined by a
simple equation which is easily and quickly compared in a
program as opposed to, say, a large locus of surface points
which must be analyzed one by one in a lengthy process.
This too has its drawbacks in that again certain shapes are
poorly represented and take up large amounts of extra
space. For example, a jagged, spindly, star-shaped object
has a small total area yet if one encloses it in a square,

a much larger polygon would develop.

29

of*

el .J. -,,. ¢ '; -"'."J"' s f J‘. C -’,\--’. o %";' VA GRS CEREN \'.'\, "

)

o).

Rls

-
)

oy

-~

CLIARAAS, O

Sy A T

-~ g
»

P L Y |
170 e)

"\'n:v L Y
2 »

oy Ay

P o ST Y b

ACE AT

a5 ‘:"r_‘- o

-
-

L

b o o

] n"?’f'}'; A

Ia

S e
LIPS

oY, T
AR AR

AATA

A

.-.:r £

N

[

&,\ R

WALE LY,

»
¥
- N

.
D
a, & e
b "

« .
L

\ Wi AW O W TV S e A A A

3.3 Avoiding Obstacles in Motion

The next order of complexity in solving the collision
avoidance problem occurs when of a manipulator moves
through a field where the obstacles are in motion. This
creates the additional problem of having yet another set of
data to process. It was remarked by KRokaji [9] that the

sixty-four parallel on-line microprocessors are able to

Obstacle

Figure 3.2
Polygon Representation of Obstacles

30

.....
..........

+

a'me 8 2

B

[et P R s 3

-r/'.'

A 4-, KRR

v . . ' . ’ ey 3 o T—
s R0al i iite GRSyt 44 p b R | o e - g d . Al ot a0 At it e i in* g™ A SR oL/ ahe o) g

handle this situation. An effective algorithm was also
suggested by Khatib which is based on the "Artificial
Potential Field Concept" [10]. Here, real-time collision
avoidance by a robot is achieved by utilizing visual
sensing in an environment with moving obstacles. The
theory set forth is to assign an attractive charge to the
desired destination while assigning a repulsive charge to
obstacles along the way. Thus, not only the end effector
is involved in the ©process, but each point of the

manipulator is also considered.

The advantages of the process are many. Most
collision avoidance algorithms are implemented at a high-
level control whereby the speed of process is paced by the
time cycle at this level. This 1is several orders of
magnitude slower than the real time process of the robot,
thus limiting the speed at which the robot can perform its
work. This algorithm is implemented at low-level control
thus allowing feedback from a complex environment while
still maintaining high process rates. Note that this is
not meant to replace high-level processes, but to better

utilize those at lower levels.

A second advantage is that different potential field
functions can be tested so as to provide different levels
of avoidance. For instance, objects may provide a linear

function of distance versus force to have large or small,

31

,,,{. e e e e > r..'.r.»..'.r v e W

SIS e .-.-.-.-.‘~.".‘.\\-.\x\. ~\--.\.\\\.\\\-‘\\‘\""~.

\\\\'\"'\

« e e
® e

Al
L]

i o S ¥ ey

et LT O

R
L

-

LA

VT TIOC Y

f'll_l. A RN N

P TP T T Pe It 4

._.'.', .. " {. "7

LTI N

Qe G

[N

A LR LU WL R OO N T T N AR T R T e T T T W '8 ' DA a'd o' atE e ot T A

positive or negative function slope. They may also have
some sort of exponential relation where the force is a
v function of distance raised to a prespecified power. A
disadvantage is that the path chosen is a function of these
forces alone which may not be the optimal choice. Here, a
higher level control may be influenced by this algorithm in
4 that the potential £field functions provide a partial
decision as to the path. Then, it can be used 1in

conjunction with other optimal path algorithms.
. 3.4 Navigation of Robots Through Unknown Terrain

The next step of complexity is to move a manipulator

sa oA

through a field with no prior knowledge of the obstacles
located in that field which may also include other robot
arms. The actual research was motivated not to control

multiple robots, but to navigate a mobile robot through

- DN

unknown terrain ({11]. However, a very good analogy can be
made and the theory will transfer to multiple robot
coordination well. The two underlying concepts here are
the fact that first, the manipulator needs an external
sensory system to detect the obstacles; and second, once
the robot realizes this object, it must ‘“remember" its
location and size in order to make better judgment

. decisions for the next sequence of movements.

g

32

e b o e e T 7 0 A o a0 o AR B b T S A e 7 S TS S e

UL ot R o il

o«
e L

PR A o

TAANS Y

S 548

~

2

!. -

" ¥
-

RS

f]

- ey b

YOI RO

« 2 a8 8

WA AT

Rt @iy el Wi ettt tat e R VTN DL RO R O Y A UL VI UV WV VORIV WY

For the sensing aspect, several methods are introduced
to include vision locally and globally as well as tactile
proximity sensors. The feedback from coordinated robots
may be utilized to have one robot communicate with the
other about its location, and vise-versa. However, this
problem is more relevant for the computer vision and sensor
specialist. For the purposes of this thesis, it will be
assumed that an accurate set of data has been produced.
The real problem now arises in that the controller must be
able to manipulate vast amounts of data which is constantly
changing. One approach 1is "Quadtree-Based Path Planning”
(12, 26]. Very simply stated, this approach assigns
various gray-scale values to locations in the area of
movement. These values are thresholded and immediately
values over the threshold are ignored, thus decreasing the
number of computations. This process 1is adaptable so as
new information 1is received, the "picture" will be changed
to reflect new possible or more effective pathways.
Through this method, a 1learning algorithm can identify
obstacles quickly and ignore their location's computations

to speed up the movement process.

3.5 Mutual Collision Avoidance of Coordinated Robots

This discussion has been geared to 1lead into an
analysis of two coordinated robots working towards a common

goal and simultaneously realizing each other's actions and

33

LS

Yo MW WA T -

C RIS Lar] ~ Vs e Rt

“x
o

U < R N ‘K‘I'

I

L
g

o,

Sul = 2]

et

" e ._'1.’

WIS & R N

LY.
y

P T e P T % " LU T e LI R T R T R T P S R T T T T N R T P N U O U N PUE PR Jor o Pu
R O R S S LT S L O B VA A A AV AR

SR R T e
R AR Y

locations so as to prevent any possible collision. Note
that this algorithm must be implemented in real time and
must be automatic enough so that a programmer will be able
to identify a new process (say an assembly) to the robots
and not have to worry about their collision. The name
given to the process of two coordinated robots avoiding
each other 1is "Dynamic Avoidance" as opposed to static
avoidance where a robot is avoiding stationary or well-
defined objects. One method of dynamic avoidance 1is to
simply have the controller always program the robots to two
completely separate paths. This becomes unrealistic as it
would make the problem of path planning much more complex,
if not impossible, and probably at least greatly increase

the required amount of computation time.

Two very feasible alternatives arise when the concept
of dividing much of the work among several controllers is
evoked. The first 1is an adaptation of the "Artificial
Potential Field Concept" [10] using two controllers. Here
one can have controller 1 calculating the attractive and
repulsive forces for robot 1, where it assigns a repulsive
charge to the dynamic robot 2 and at the same time have
controller 2 doing vise-versa for robot 2. This way, there
are no more added computations per controller and real time
calculations are still maintained. This algorithm is also

a very useful since the two controllers can provide

34

A WA TSP AT S P R A A R AT A A R N AL .. e o -"
A P A I A ST L A P \.\v~r__- ANy ..wr,*..-_. \ \v; W

"‘ - -
T A A A A I

el

’P

LA TINS S

??\; -
A

s)\

PP

v

2 IS,

L 4

.-
Py

- -,!.;,’- -

el

(¢ -(‘-

-

Sl

R
e
o

? 2 ‘,'.,.."{» e, x’\’s S.fﬁ’..’ N

2

.
<

%

- -
PRe A4

vy
(L

4 Ny o

7’

“y

(SN CS CRANLYy
-9,

id

e

feedback to the coordination controller thus decreasing the
work load at that 1level. Note that the corollary of "if
one robot avoids the other, only one collision avoidance
mechanism is required” is false since each robot must also

independently avoid other obstacles at the same time.

b
[T
)

However, there would be a time savings if instead of having

~

both robots check each other's position, only one of them

.
e

i

performed the mutual collision avoidance schemes. Both
would still search for obstacles in their paths but only
one would be able to detect the other's presence. The
setback here 1is that this tends to be a master/slave

situation where the slave would be checking the master’'s

position and the master would move with ignorance to its

Y
mate's position. Thus, it may unknowingly cause the slave i
’.
. . . ‘N
to drive towards an obstacle. For the savings 1in o~
<. 4
g
computation time, the small 1loss in intelligence may be ::
.

acceptable.

Lo,

'n‘-"

e

A second alternative 1is the permission technique.

FP

y)

4

This algorithm also lends itself well to real time since

many of the processes can be divided among various

controllers. The idea here 1is that each robot seeks

permission to enter a particular "space" before the actual

motion takes place. At a first glance it seems that this

is a very "last minute" process, but in reality the v
.H

permission process occurs over a much larger scale in that AN
»

.'.

"

-

o

35 o

{I

.,\

-

e

o

«fat e aal

S0 LA NS S N PN TN Y aWa ¥ o W S LS N WO A atatul A BAAAN Aol Sl Al S G S AR ASSA G A A A GRS o gr e 090 aN

permission is requested to perform a sequence of movements
and the entire sequence 1is checked against obstacles and
the other robot. This lends itself to speed since one of
the ends has permission being requested from two separate
robots, and the opposite end has a constant influx of
information as to presence/absence of devices, sensors,
input, etc.. In addition, in the controller there is an
intelligent decision making algorithm which 1is very

straightforward and capable of real time calculations.

Another physical problem encountered in coordination
is that of twisting (refer to figure 3.3). In this
situation the two robots which are holding an object, may
be directed to rotate in a horizontal plane thus causing
the links of the robots to twist upon themselves and

perhaps collide.

There are several ways in which this problem can be
solved. The most straightforward, yet most limiting,
format is to restrict the roll, pitch, and yaw of the
object to angles between N and -N radians as compared to
the world frame. This effectively prevents the robots from
twisting to the point of contact but does 1limit the

movement of the object from obtaining certain possible

orientations.
36
e L4 IRty a8, ar . - . Cmg e, APt A e »_._-\-_\.\. -~ .»'.-
oy 5-. ﬁﬁu\&A'Lﬁi J»Il'.ﬁ_..&‘ A; o S VAL AT F AT O sl S

-3 h]

5565

T N o I o™
oA fl}{.vfn*' ?u’-’-’u’\f«-&-\. e Ja o .}“I\J..dl\

uost{[0) butysta)
£¢ aunbry

1930 40
UOTJRIOY Mef
N

T e EEL
T L, b T T T b A AR b SN

VAT I S T R AN

103(qQ

¢ 30404

37

U0IST{10]

oo

| 30004

E A

- o
,l

AN

.
I
4
»
»
e
(

"
&
&
f
o
k3
¢
J
¥
i

v,
g
[
-
b
f
N
N
The second solution is to implement the Graph Node %
Search algorithm not to the robots and their surroundings i
-
but between certain nodes along the length of the robot's «3
\
NEaS.
arms. Thus, at every iteration the distance between each g
i
of the nodes is compared to some minimum value and when 4
R
this value is crossed, a recovery routine takes over. Q,
l‘- ‘
4
3.6 Concluding Statements "
2y
Collision avoidance can be considered to serve a dual ;t
]
purpose. First, it provides vital information regarding .‘
Y
the whereabouts of obstacles present in an area so as to]
.
¢
allow a computer to make intelligent decisions about the $
-
path planning problem. Secondly, it provides safeguards f:
P
from the catastrophic occurrence when robots come in)
a
-
unintentional physical contact with an object to cause some o
.
i
sort of damage. In order to maintain efficient, cost f
e
i saving robotic operations, the concept of <collision »
S
?
. i
avoidance must be well understood and implemented in the o
process. :{1
<
38

aey e iy e e -
AR LN RO LA ALR G e ST N

.
S N

".ﬁ LS E Yl ¥ " Ca ¥ N4 Aa'laa iy A TR W W R W T PV a W YN e W g g ot 5 a0e'ols gte e o’ lat lat "ol ot A V
e

"

d

[r

v‘

’u

e

od CHAPTER IV

o PATH PLANNING IN COORDINATED ROBOTS

&

Mi

s? 4.1 Introduction

b »

N Path planning involves the determination of an
. object's trajectory between a prespecified start point and

some end point while attempting to minimize the cost of the

o movement in terms of time, or energy spent. Path planning
L
o techniques must also take into consideration such problems
D)

as finding the minimum horizon or in other words, the most
efficient path to follow while still satisfying a variety

of through-points.

P ll = ’ a
SRR RES & r r A

There exists a fine 1line between the ideas of
collision avoidance and path planning. This is mostly due

to the fact that the two are dependent upon each other for

-

calculations. Also, there is rarely any utilization of one

A

;3 without a similar implementation of the other. As shown in
EE one of the solutions to the path planning routines below, a
:T combination of both path planning and obstacle avoidance is
%E suggested since they are so closely integrated.

E: This chapter deals with the problems encountered in

;if the planning of routes for the c¢coordinated robots to

Ei follow. These problems include timing, deadlocks, and

25 recovery actions as typical examples. 1In addition to the
3

' 39

o

o

Al
Ll

Y3

N e,

o, A AU

D LY JYL P I TR I
-' -s_ & e 'J‘ Sl
-

v'l"' ST AV ')-;d'-"f-',f.'-',('f '-\‘-." " -"._'~ T A TR ,,'p,‘- \' (RERL N " -~

Ao ANl Pl el A A NSRS AL Y

7
"-’

3

n

&

I qu
ad

| discussion of these problems, a few examples of path H.

| .
ol

planning techniques which are wutilized in industry are

presented, o
Y

o)

. . . ~

4.2 Path Planning in Coordinated Robots ="

. . . AN

Path planning for a mobile robot or a single robot arm ,.
=\
» 8

takes several variables into consideration. The choice of o
‘o

these variables depends on considerations such as what »
1

types of tools are being used, what are the tools' o
J

(Y

’
availabilities, how <c¢lose can the manipulator approach the ;:
o]

v,

workpiece or the boundaries of the work environment, and is [
there a timing sequence involved where a closely controlled ;
o
process is occurring. These factors provide a firm base uj.
l'\ "

and a well defined set of restrictions on which the rules 3
for path planning can be formulated. Thus, path planning ?:
=

o,
at this 1level is a relatively easy process which simply 3:
Y,

requires some prior thought as to effective and efficient 4
)
paths for the robots to follow given the guidance of the ::
~

~
constraints. =~
Y
I. %)
P
The coordinated robots also have these types of .
problems and solutions. However, since there is more than :?
one manipulator in the work envelope, some other problems S
present themselves to the path planning scheme. xﬁ
» A i

o

The most apparent of these problems is the fact that ::
LS

the path of one manipulator will constantly be a function »
40 o

o
N
2}

»

”
-‘. -
“a

v
S

RO
e P P, BN WV e Sy B WY LW L B T L s a W WL W W e W e E Wy 8w N R T T T O T U P IR ST i U S P s e ®
N A A I L I A R "ol nl s g o o T ,;.... .rv\.r o .r'\.- NG G NN

L gl e 4

o

Ko

0y

Y

L3E WL A R Ny

of the path of the second manipulator and vise-versa.
Thus, in order to determine the route that a robot must
take, the robots not only have to monitor obstacles in the
work envelope, but they also have to take into account the
movements of the other robot. In the discussion of
coordinated collision avoidance, many of the complexities
of data processing and computation speed were identified as
being inherent problems with 1limited solutions. Since in
path planning there is the same situation of multiple
robots communicating to each other, these same problems
apply for the same reasons. A vast amount of data must be
manipulated for intelligent, on-line path planning, and
efficient and powerful algorithms must be developed in

order to effectively process this data.

The second major problem 1is that of proper timing
[22]. With one manipulator, the exact moment in time that
the manipulator occupies a position wusually is not as
important as the fact that it must travel from a start
point to an end point smoothly along a predefined path.
With multiple robots, this timing becomes a very important
factor as each of the robots must be aware of the other's
movements at all times if it is to generate collision free
paths. In the case of a mutually held object, the mutual
timing is important for the obvious reason that the part is

being rigidly held. If the ¢timing is not very close to

41

K X =

] l.“‘l

v
Y4y

. 7

<,

perfect, the robots may damage the part. While it is true

that the collision avoidance schemes would provide checl:s

against collision, a prior knowledge of the motions' timing

could provide a much quicker means for the individual

-r(fr.i-’.

robots to perform their path calculations.

two solutions to these problems.

There are at least

First, if the process is simple enough, it c¢an be stripped o

of 1its intelligence and made into a hard automation

process. Thus, all of the path planning can be performed

off-line and tested for accuracy. Since this discussion is

intelligent manipulators, this solution is .

geared toward

trivial.

A better solution is

to implement the simple path

planning techniques developed for single manipulators and

rely upon the collision avoidance routines in order to

prevent catastrophic failure of the manipulators. This is

advantageous in the sense that since those collision

avoidance routines are being run at all times, they might

as well be utilized to help generate paths. Thus, these

collision avoidance schemes will allow simpler path iy

planning algorithms to be as useful and complete as the -

L

more complex algorithms. Also, a decrease in computation

time should be realized due to the use of the simpler

algorithms. The combination of path planning and collision

avoidance techniques provide very straightforward solutions

42

L '.'-n;'.-.'.\'x‘"\-"\;'","\-.-“.;'-\‘"\.-'_.-',;-' NI R I AP St R -'. ‘At -.‘. v-' -‘.v._ . v.. "- -.‘.-., A _',._;\..-, -~ _-.;‘\;-,.. .o

SO T WA WA A S U iel g LA OSBRSS 2 AN A A AN ML o A SRS NN ofin o0 AR aie > gt Aab et Pafabiat S Bel LR 50 Al S R 3l 2°8.4 % Y

L

as the manipulators ultimately reach their destinations in

kﬂ a collision-free movement. However, there is an inherent
'ﬂ cost in attempting to attain path efficiency.

>

a Since the obstacle avoidance schemes do not consider
- the "a priori" knowledge of the obstacle's positions, there
E% is no guarantee that the path that 1is forced by the
.i collision avoidance schemes will minimize energy or time.
:ﬁ This becomes increasingly true as the workspace becomes
jt more clustered with obstacles as the manipulators spend
O more time trying to avoid obstacles than they do trying to
5} follow efficient paths towards their goals. But again each
g% problem is very independent and trade-offs such as these
;? must be weighed to find an appropriate solution to
?ﬂ individual problems.

%
Q; The third problem is that of deadlocks. Imagine a
:: process where two manipulators share workspace and tools
:g but perform different operations on the same part. The
E? rate at which they do their work may be different;
'? therefore, they start and finish a part cycle as they are
éf able to. The deadlock in the process may occur when both
23 robots reach for the same tool. If both need to use the
T: tool, at the same moment in time, they effectively prevent
o

i each other from continuing the process. A conflict
.

E: resolution strategy is required in this instance.
A

y
o a3

M

\J
5

T e e

T RSN NN - Balilin® i’ S0 A R VR 10 0% 0,00 0° 0 0 00 0l "Y atgh Vet . NPT N T N NNV WSy,

The solution to this problem is the implementation of
recovery algorithms which provide an intelligence to decide
upon appropriate actions and direct control to the more
qualified manipulator. A more complete discussion of this

issue is included in the following section.

4.3 Available Algorithms

Two path planning routines are discussed which provide
real-time, proven solutions to the problem of path planning
in a work-cell with only one robot. These routines do lend
themselves well to implementation with multiple robots and
thus will be extended to be implemented in work-cells which
contain multiple robots. These routines are the Activity
Controller Scheme [6, 24] and Resolved Position Control

[13].

The Activity Controller Scheme is a structure which
has been set up in order to provide guidance in developing
a large scale system (refer to figure 4.1). 1In general, an
activity controller (AC) (usually a dedicated computer) is
assigned to each work-cell in a plant. Each of these
microcomputers is in turn linked to a coordinating computer
at the plant level which in most instances, is some sort of
mini-computer. The plant controller can effectively

control the processes of the entire operation as it has an

44

------------- AT A AT A e e LA EE AT A S o At v L AT e W, e W -
\.’\'\I\."\l%’_ \. ‘-.’*‘ \’\- \’1-\’\ A \ \\ 19 "\c-. N AT A TR O N N T T \- \\. KRR NN

- \ n K\lA (‘: L‘_ \. 'v -~ '.'_ - ‘.';'_'»'- ‘. .'_ \‘w..- - g - . .. ' LA ¢ Sl el £ ot ol AdCS) " LA

W, d
,l
'I
»
L) A
A
) ‘ 14
2 indirect communication 1link with every device in that y
l
plant.
.\
h\
;: FEEDBACK
- PLANT CONTROLLER <--- FROM)
- {Mini Computer) ACTIVITY :
- CONTROLLER
. 1v
N |
b 1 FEEDBACK 3
- ACTIVITY CONTROLLER [<--- FROM ,
- (Micro Computer) ROBOTS b
: AC I ! H AC II
o * Path Planning 1{<--{ * Collision Avoidance .
- * Optimization ! ! * Potential Conflict)
> ! ! Situation '
'2 f=~=>1 Identification §
‘ﬁ ! | * Recovery
? lv ! i fv
. L e 1=> 1
N CONTROLLER 1 : CONTROLLER 2 A
L3 (___________
5 P e ;
i 1
:a ROBOT 1 ROBOT 2 1
f:'
“l
-~ :
. Figure 4.1
L Schematic of an Activity Controller
‘ ~:~ v
b . The activity controller receives instructions from the :
'i plant computer as to the tasks it is required to perform. ;
'3 Thus, its goal is to create specific instructions for the
f robots to follow in order to accomplish that specific task. 3
R ‘4
? This instruction generation process takes into -
P, ¢
;]
consideration available tools and stock, time requirements, ;
.. 3
. the particular characteristics of the manipulators, the >
.. 4
2 coordination of the manipulators, and their path planning. %
- %
n
.
. 45
r'a
M
~ .
.

AN)

o, <"

"-’ -J‘ - ‘J‘ -'_ '- ~ >". ‘J‘l_‘ -. p W ."{ -(\f“'.“:'l‘(:’;‘;-’"Q'?\f‘J"-';-J‘_'-"- Y :.'-_'- ‘\' ;-‘_'-,-.¢‘-}\J_\'\‘.\.’.‘-_;-". \,:' .". ‘\.(‘-7‘ ‘#‘“J‘;’H“n"‘f‘-‘ -,

TN SN AN

The activity controller deals with these complex and

complete tasks through 1its division 1into two separate
units. The two units have unique functions, but rely upon
information which is received from the other half. This
information is transmitted through a feedback
communications network which links the activity

controllers, the manipulators, and the plant controller.

The first wunit, or AC I, deals mainly with the
planning and optimization of the paths in ways similar to
those which have been discussed. Routes, paths, through-
points and the such are all generated and sent to the

robet's controller.

The creativity comes in the implementation of the
second half of the activity controller or AC 1II. This
section has the ability to not only handle impending
collisions but it looks ahead in the process to identify
potential collision situations. This effectively operates
as a path planning routine as the path is generated with
the knowledge of the these potential collisions about to

occur.

AC II implements itself in a three step process. The
first step 1is to identify those items which both robots
must share in the process and with this knowledge develop a

set of potential conflict situations which may arise due to

46

S

L

o 4

[MCMN

s .
",

ST

..
PINCA 4
| I

a_v . v

,.._
AN
4 a

-,

LA

-

N

v\.‘r\

el 4

5y

L2

pyay
[}

L 4

W AANE, 4
,:'J\J\,:‘,' A ” g

s 4T I I I

AN T B e N AT A R O T AT T O T P W W L RO
: : e A WA

Wt GO A Y Wy ® oy v iy 4> L SALAAS AR e St Sak, l ‘4% % (WP Ny NI ITX LAWY R T WY P R A4 Y R " g

-
.

A

the acquisition of these shared resources. This is done

lf Tt N kB

simultaneously as the process progresses and allows for
real time implementation as the robot can perform its

manipulations independently of AC II and will not be ;

hindered by its progress or lack thereof. s

; 3
: The second step is the use of "prevent" and "detect" :
; algorithms. The first of two alternate approaches is to :
\ have the computer monitor potential conflict situations. If :
one is detected, the computer will direct the robot to é

W

" choose an alternate route or to simply wait. The second :
2 alternative is to have the robots ask for permission before A
i they can proceed on with their tasks, thus providing a last E
? line of defense against any collision from occurring as 3
:i alternate routes can be chosen. ;
3 The third step simulates intelligence as it provides a E
recovery algorithm for the system to follow in case all of B

' the other safeguards have been unsuccessful. The situation z
.: occurs where the manipulators progress to a point where i
i there is an impending collision to occur. For example, the ;
: two grippers may want to retrieve the same part or tool. g
: Up until this point however, AC II does not detect the {
i impending collision due to the fact that it has been '
. N
: occupied with other computations. Here, AC II will be E
: interrupted and forced to implement the recovery algorithms ?
where it provides the manipulators with an intelligent)

: g
: a7 3
L] s
v -
2

R A AR AR

s

Al

- _w P O L o i v I P R P I I A N e
o

-I'I-!*.b‘.n'.f‘-a'..'.rf'-r'-/-.f-.l-‘\'..'\,.r.J'.(N

i) .A.

- - - - - .
AN PN AT .\ ..-__\r__\.

e VLT W B

Phaf et D e

A
\

I A L SRy

mears by which they can control themselves in order to

regress away from this situation.

The most optimistic of recovery algorithms provides
answers for two problems. First, it will be the decision
maker as to which of the robots is to continue on with its
routine as planned. This is a relatively simple process as
it would be able to easily evaluate which robot has the
more important task at hand or which is in more need of the
device. Second, and a much harder problem, is to instruct
the waiting robot as to some other work which it can
perform while it is waiting for the tool to be freed. This
presents itself as a fairly difficult task since there are
many variables which would influence this decision. The
waiting robot may be able to use another tool, since
another function may still need to be performed. This
action may help the first robot speed its routine thereby
making the tool available sooner, or in the worst case
scenario it may simply be directed to wait until the tool

is once again available.

While this provides groundwork for the implementation
of multiple robots, the same problem of computation speed
arises. This is a complex algorithm and the extent to
which it can be used is definitely a function of the

computing power available,.

48

o T e e Tt e T, T A PP R S S D A S S G, I S
B e A A e N S STy S

.
-t

S,
B
L NEIN

. N .

Labityisn e Mt) po et b0y it oy’ b Mt A il e R oy

AR RS

T O % Oy v e

Rt AT

*

P LXALLA

gty
»

-,

yo x v

RASL AN AR A ARS

AN

.'l’n(- 'f././

L S L A,

NIRIN
el

s
.

The second algorithm which 1is available is called

Resolved Position Control. Here, the path function 1is
generated via some external reference. This reference
could be the center of mass of a mutually held bar or
perhaps the point of contact between a part and where it is
to be drilled. This algorithm is discussed in detail in
Chapter 6 as it is the algorithm which was implemented for

this research.

4.4 Two-dimensional Approaches

Along with these two algorithms, two two-dimensional
methods are discussed which provide insight into the basis
of path planning. While they do not readily provide
complete scolutions to the problem of multiple arm path
planning, they do give guidelines to follow in specific
aspects of the path planning problem. These techniques are
based upon the Distance Function {14] and the Local Dynamic

Path Generation theories [15].

The first of the two theories is the Distance Function

- Theory. A brief discussion of this approach 1is given
;: below. This topic¢ 1is included 1in this thesis since it
)

oy

' emphasizes several points which provide useful information

when applying various path planning algorithms.

49

® e NSNS N L. f’l'.f'f: X ».. e, .’. _'.'\-“.-".'f:v'..(...v R

The use of distance functions basically entails an
optimal-control problem which requires that the following

energy function be minimized:

T
J = Fo (x(0), x(T1)) + [F(x(t), u(t)) dt (4.1)
- - o - - =3
._r:
o
where "F" 1is a predefined, arbitrary cost function, "x" o

gy

represents the state variables, and "u" represents the

system's input. Time t runs from 0 to finish time 7.

The state variables in equation (4.1) would be both
the position and the velocity of the manipulator.
Therefore, the minimization of "J", which is indicative of

the movement's energy, would be directly related to the

»
o

route which the manipulators follow.

- -
v

)'{l l.l,‘
N LR

M ';.--

&

-

-
]
'

=

., '
A
777 & ==

Figure 4.2
Implementation of a Distance Function

S bl

“u

"
775
x

X

e e e e e - . e e s e et e e e e e e e e e e e -
PACIEEA Vo A . N ORI SO T A N S RN N

.....

. e -
DS R PR I A St R A A

et

v roa
5 &%

f o 5
5 S

Figure 4.2, which is taken directly from Gilbert's

paper on Distance Functions [14], is a graphic illustration

n,.'- St

of a path generated with the minimum energy stipulation.

. .;':-‘:-\: ':_

This figure shows actual output from a numerical
simulation that he performed and vividly demonstrates the
intelligence with which the path is chosen. Note how the
object rotates counter-clockwise at the high point of the
path in order to allow a vertical threading through the
obstacles. Also note the smooth path taken. This path
does not necessarily skirt directly around the obstacle,

but rounds the corners in a continuous motion.

These calculations point out several properties which
allow for intelligent movement. First, since the actuator

moments and torques are proportional to the energy, a

TAAS

minimization of that energy will decrease the proportional

v

torque and moment at the individual joints. This has the

- ::.. o

effect of causing the motion to be smooth and fluid as

)

opposed to being sporadic.

N ¥
Ay

Secondly, since energy is a function of distance,
minimizing energy will be directly related to a
minimization in distance. There are many paths that a
manipulator can follow between the start point and the end

point. The minimization of the distance of that path will

T N S A s

most obviously provide an optimal solution.

AT AT
’

N o r P

P s s f e i d A p e e .
N e T S T e T ~."'~..\'~,’-. ALY .\'-.’-.'h‘s-':\ N -

GG TN N,

AT A AT AT A TN IR AT A N

R PV A XK d -+ bl 4 4 SN, ¥ L L% el St LIFA A4 L FA AN LN 0 AN AL £ 5 A AN R Al gl ol 0l AN oD SR /il oV SRR SR~ R~ 4 ok
‘

h X
.% The second of the theories is the Local Dynamic Path
h
' Generation Theory. Note the use of "generation" versus ;
; "planning". This indicates that the path is being chosen i
E only at the local level in the vicinity of the manipulator Q
'N and that there is no "a priori" knowledge of the obstacles. o
g
0’ R
A Two underlying assumptions are made at the onset of ;
(: this type of movement. First, the entire body of the robot :
is able to detect an obstacle as if the robot is sheathed
i; in some sort of tactile blanket. This function could be %
ﬁ realized through many sensors or perhaps more realistically \
through numerical calculations but regardless, the -
S information is assumed to be available. Second, once the E
;7 robot detects the said obstacle, there is an inherent E
; ability to skirt the obstacle. This not only includes the :
"
E end point of the effector moving around the obstacle but E
;f also the individual arms of the robot. Thus, the solution 4
- is not to simply have the end effector feel its way around .
; the perimeter of the obstacle, but to have the entire body ;
: sense around the obstacle. h
Y .
; Once these assumptions are made, the theory is very p
i simply stated. There is a known start point and end point i
~ .
A in space. The most desirable path to follow is a straight
; line between these two points. The robot follows that path i
:E until an obstacle in detected. Upon this detection, the ﬁ
robot uses its blanket of sensors to skirt around the
. 52 X
N N
" N

\\,\‘ . ‘.__'-J,*.-'\'\w A

N PATATA AN

th*. 'b“\

-l'.gg .)".r

e AT

TansLy N

N S A SA]

perimeter of the robot wuntil it reaches the original path
on the other side of the obstacle whereupon it continues on

with its motion.

Eng Point

Obstacle

-

Start Point

Figure 4.3
Local Dynamic Path Generation

Figure 4.3 1illustrates the motion described above.
The manipulator starts and travels along its most desirable

route (positions 1 and 2). Once the obstacle is detected

53

5 (position 3), the sensors on the end effector allow the
manipulator to skirt around the obstacle (positions 4, and
5). Note in position 6 that the body sensors now provide
the input for avoidance. Once again, the robot finds its
original desired path (position 7) and continues towards

the end point.

. This theory brings up several interesting points.
First, there are two possible alternatives of travel 1in

order to avoid the obstacle. The manipulator can skirt

COC RN

either to the left or to the right. Since there is no "a
priori" knowledge of the obstacle, an intelligen* decision

cannot be made as to the most feasible choice and a default

[i S Ok W Bp N

! direction is chosen. This thesis suggests that even
minimal knowledge of the obstacle in the field would
provide enough information to make an intelligent decision
and that this information should be included in the

) formulation of the theory.

Secondly, the concept of the "virtual obstacle" is
introduced. The virtual obstacle not only includes the

space occupied by the physical obstacle itself, but it also

a5 T eV a e

includes that space which is unobtainable by the
- manipulator due to the presence of the obstacle. This
extra space 1is referred to as the "shadow" of the obstacle
(refer to figure 4.4). The virtual obstacle for a simple

two degree-of-freedom robot is minimal when compared to

54

«

v
-
'

S I TV R S AR A I
S AL SRR

-
\,‘

s r et e ea iy s e . . L i
AR e T T e e TN SR A YR G G s P SRR
' '« S S 4 . N N I M) N . 5 ! ¥V, *! 3 3

. A A B

L)
“ .
»

PR
‘."--

R

Py

~—y e e e

‘I
N

'

that of two robots mutually holding an object. Thus, a :
e

N d

point well made is that when dealing with more complex

systems or those cluttered with obstacles, movement may %
-
become very limited if not impossible with fields deemed E"
w

simple for certain representations. i
S

s

Ny
C'(

SHAOCW)
S
: ,

@ v “ORK)

K] ENVELQPE

L X XXX L

9. 0.0,0. 9, -

9.0.9.0°4 N

0. 0.0.0. ¢, "
9.0.0.0.4 .
Q) S

OBSTACLE — T,‘...4/ 3
\.’-;' ‘-_

N
® v, L,

“~

$~

LY

*'

)

)

Ny
b
Yt
"

L

Figure 4.4 l;
Shadow and the Virtual Obstacle i‘
3

Third, is this routine's solution to obstacles located y

W,

on the boundary of the work space. If the manipulator "
happens to skirt to the intersection of the obstacle and E;
the boundary, there must be recovery from stopping at the ;*
--"

55 =

~

kS

- - . - - - - - - - ~ - - - - . - - - - - . *
REAC AT . AT At T, A) AT - - T T T T AT N X RS 9 Caw,r
A T T N T T A R e I S R CES -."\. Y "\"\" " """'

!

W s BB rAlLe

. LA

T

LSRN

PO POE NN N

o 8 8 2 4 1 -

0707,

AN N AN '.f‘;,l';.";f.'f..l_.l’.‘l_' TN e T e A e T A e A

boundary. In this situation, the boundary is not
considered to be an obstacle. The joint angle limitations
and the singularities will prevent the boundary from
imposing a discontinuation of movement. The manipulator
will continue to skirt around the perimeter of the obstacle
using the body sensors. Note that the end point of the
robot does not have to be the point to contact with the
obstacle during the skirting process. The body points can
provide this function since they are equally well-equipped

with sensors.

The main point to be emphasized by this theory is that
when dealing with an obstacle field in motion or one where
the exact 1locations of the obstacles are unknown, a local,
dynamic path generation scheme can provide good solutions
to the problem of movement. These solutions may not be the
time or energy optimal but they do indicate possible and

reliable paths for the manipulators to follow.

4.5 Concluding Statements

While the problem of path planning is closely related
to collision avoidance, there are distinct differences.
The presence of obstacles do affect the generated path.
However, instead of being <c¢oncerned solely with the

avoidance of obstacles in the path, path planning

56

A AT

IS A, NN

AN I AR e

PN A N AT AR RN

NSNS S
B

A o DU o hache pee p0n i ghe- piin- SA-oesSie g8 A toe \wie tALo ANt i Aul Snd Ant Suh A i Rl A Al (Aol SR Al AP A Al AN SN AGE 05 gea any

Yy

nhs,l,'.\“"i

« v'n 2

oA

-
0

’o

I

.\\\-\'\

o,

-I'J'

techniques can be designed to determine the path of least

energy or time spent given the location of the obstacles.

This chapter gives a summary of some of the theory
behind the path planning techniques employed in the
manipulation of multiple robotic arms. Several example
algorithms are discussed 1in addition to some of the
problems encountered while attempting to perform these

calculations.

57

I N A N N N N S A N A,

"'__\.J,\’\r_"\"\-r ’ (.’. .’ -f.‘l‘\f\f\$~\ LYy

NN TN A

e e

v e?
AT Y

<«

AR

-y

y ¥ ¥
A AOGA

PR

AW Ty s

-l
‘s r A A

‘.
A % %y,

S

"

ST,

S -y

LR t"n'. ‘
b P P

L N N L AN
AN

e

XA AR
AR

0,

e ‘-' PP

-

.

o -

s
CAERCALR

uP A" A" A '~ - » - ALt e ef ZAt fn inf Sind b ie® et S A At WL T T O I T [OATRE ATl Sull it dad -4

Lg% Wi ."‘.vl.
2y

-

CHAPTER V

) SYSTEM MODELING

5.1 Introduction

A T ",

The general theory behind the c¢oordination, path

planning, and collision avoidance of coordinated robots has

been presented in the previous chapters. Several examples

TR e

of viable algorithms as well as benefits and drawbacks of
. those systems have been discussed. This chapter will
concentrate on a specific task and set of algorithms which
N have been implemented in computer simulation. In addition,

it will describe the various technologies and theories on

which the present work has been based.

CTE R LA A AT R N R

The specific task presented in this thesis is to guide

AR

etevaE A LRI
o e,
'

two coordinated robots holding an object, through a work-

".’l

space having obstacles. The motion of the system is only

to be defined by the start and end positions as well as the

XEFIIN

orientation of a coordinated system which 1is 1located

)

arbitrarily on the object's surface.

JONS L

Several other assumptions are made which £further

define the problem to be solved:

)
“I‘ g

1) The two robots are to have a shared work

AL

envelope. This means that there exists the

=2
a’e

possibility of <c¢ollision between the two

58

v
A ey

b

by

~
!,
'

L “am - LI L T S T S e S IR N N]
L \.«'\ \1_../ W .r". ,\._r.‘: .r "'\. \-\ .‘ \-'_-'.‘-._-"\ Ny e’.‘ .\- -\-./‘ " P',-.‘-ﬁ\'{, o «-‘ ' L4 .1..- .)' " J~ ¢ .--'

Pl B By B S =

Aol NSNS R

! PR NS

[Sy)

Py

AR e i T L ”
LU GL G LA LA SO SN SN AT AN S LAt A0 a* 1L R A SULAAR AR A AL SR aARs JHE JUR AR o00~J0n>a 0 o la e ' JAn* oty

robots as well as the problem of twisting
collision of the two robots holding a bar.
Twisting collision is the situation whereby
the object being held by the robots rotates
in such a manner as to cause the robot arms

to twist upon each other and collide.

2) The two robots are to rigidly hold an
object and coordinate that motion as opposed
to two robots working simultaneously on a
work piece as 1in the case of the vice/tool

scheme.

3) The initial grasp that the robots have
on the object is predefined. This grasp can
be in any combination of positions and

orientations possible on the held object.

4) Every conceivable position and
orientation within the shared work envelope

is to be obtainable by the configuration.

5) Path planning and obstacle avoidance in
a space with obstacles 1is to provide
intelligent motion. Intelligent motion in
this case describes a successful, and

efficient motion which 1is derived solely

59

-\-

e e S S N S S S TS O T

LSS

Y " DAY e ekt Rt pats et fat . Y
- v 0 X D U (] - - Jwy) - -
. B . 4 3 d v ¥y V 0, U A . AT RN oW Wy e

i‘.e

o

'::r

’

-

"

~

from the arbitrary data field information ::

o,

A
and with no external help from human input. 2

~‘ '}
¥

Along with these assumptions, several realistic i

~
situations have been introduced which make the problems and :A
solutions compatible with real-world problems encountered o
LY,

o

in industry. These examples will be illustrated in a later Er
section. ;f
5.2 Hardware Modeling §,

>

7
The PUMA (Programmable Universal Machine for Assembly) ?{
Robot arm made by Unimation was chosen to be the model for {:
-"‘..

the work conducted in this research (Figure 5.1). This j}
choice was made for many reasons including 1its readily é;
]
available parametric values, kinematics, inverse 3}
kinematics, and Denavit-Hartenberg representations. @
Another reason for this choice was that the PUMA robot E

)

-

: possesses six degrees-of-freedom. The work which was j:
)

performed by Lim and Chyung [13], utilized two Rhino robots j:
each having only five degrees-of-freedom. As a result, the i,
range of motion possible by the coordinated robot scheme is %Q
] limited to cartesian movements in the work envelope and ﬁ:

only one of the roll-pitch-yaw angle changes (depending on

o,

e . Ly

how these angles are initially defined). Note that these

.f t
position and orientation changes refer to changes in the]
LI

grasped object's coordinate frame, and not the robots'.) _
60 .;'-

e

o

f

'

A

EALS

.-"l

Y HmhS

CEAAYS,

AR

)

Ly

For example, if the z-axis is oriented perpendicular to the

floor, a motion with the two Rhino robots would be limited

Figure 5.1
The Unimation PUMA Robot

to a change in the x-y-z <cartesian coordinates and a
rotation only about the z-axis. No rotation around the x-
axis or y-axis would be possible except under very limiting

situations.

In contrast, the PUMA has full six degree-of-freedon

capability and is able to reach any position and

61

W e L e,

X) "\ -ta W - -, - - . »7 w - v - LI
T SR AT e A s G e Gl gt A v S e AL YRS C R GE AR
ol a Nl ol s nXaXatat 3 lalale N o

RORRSAS

R T T A]

B ™ =2~ 2 B

=

oY G %

¥
f- orientation in the work envelope. This introduces many
\I
more possibilities of motion and functions in operations
N s .
o such as, for example, picking up a piece and then drilling
f- on the underside of that piece.
"
") 5.3 Transformations for Coordinated Robots
2
o
o
j: The primary goal in this position control scheme is to
b N
be able to generate the robots' transformation matrices
N given the transformation matrix of the mutually held
)
My)
ﬂ? object. This way, the motion can be described by a series
e'
'_ of the object's transformations. This section draws upon
"
:ﬂj the Lim and Chyung paper [13] with the extension being that
.
-".l . - » 3
g it will Dbe simulated and tested on six degree-of-freedom
-
A
?’ PUMA robots instead of five degree-of-freedom Rhino robots.
}j Let T define the standard homogeneous transformation
’-
‘o
A matrix which describes the position and orientation of some
f satellite coordinate system with respect to a reference
;'; coordinate system (refer to figure 5.2). In Denavit-
¥ ’:
- Hartenberg representation [20], the 4 by 4 matrix T 1is
..
b - defined as:
.’:.
,s
C
J‘.
- Nx Ox Ax P
3 T = Ny Ov Ay Py (5.1)
'_’:*: - N2z 02 Az P2
e
= o 0o o0 1
w.\
N
o
f‘
,’ 62
b
3
A W N R T A Ty T R L LR L AN) '.A‘-r-.'J-'-'-'*.".".‘_‘ - ‘.\'.\'-;‘.5.'\&":'_;:-‘]

», ‘ '\"\‘"‘\""‘-v’\ "—‘\ ‘-‘v\ v'\ -L""T" 'Y.'v'\' "(‘"\"Av_' v_v-'v"\ "'v' v'\v" ""v"vv{\r'_w- > .)' _"V.“:V_“?_‘W:ﬁr*.r-(.v T T T T W,

[s
Ks

Ys

Satellite
Frame

Yo A p

Az

Ys -
Ax

Reference Ar

Frame
[r

Figure 5.2
Representation of Satellite and Reference Frames

where N, O, and A are the projections of the satellite's

4

<& . . .
4 axis onto the x-y-z base axis. For example, Nx describes
s

L

L4

the projection of the N-axis of the satellite coordinate

A . - “w “w - T " T e e ‘e . te '- .- ‘- """
- A AN R e - e
\.'< Ah\.._. \"_" Lol T P e T

.y - bl S AL AE Ve - - hd
Py .l.,-.’w__\.',

N W N W T Ty W A P R P A T N a U AN (T N W

system upon the x-axis of the base coordinate system. P is

the position vector of the satellite's origin in the base

coordinate frame.

A standard notation must also be developed to describe
the transformations between the world reference coordinate
system, the mutually held object, and the robots' base and
end effector coordinates (Figure 5.3). To accomplish this,

the notation Tab (rob, t) is used. Here, "T" indicates

that this 1is a transformation matrix. The subscripts "a"

and "»" 1indicate that this transformation is from the "a"
coordinate system to the "v" coordinate system. Subscripts
"a" and "o" can be replaced by "r" for the reference
system, "o" for the object's systen, "»" for the robots'

base system, and "u" for the robots' hand system. Argument

"rob" indicates which of the several robots 1is being

referenced (e.g., 1 for robot number 1 and 2 for robot
number 2). Symbol "t" is the present time progression. As
an example, Toe (1, 35) indicates a transformation matrix

from the base coordinate system to the hand coordinate
system of robot number 1 at the thirty-fifth time

increment.

Another transformation matrix takes the form of

Tro (t). Here, there is a transformation between the

reference and object's coordinate systems at time increment

64

..... A ™ 0" A a "M A A e e A ' " AT a " e " a TR Yy T A o « v .
\"-f’_’.rcl’\'f -.F\"“'h¢\ \’\‘v{\ \f' NN \f\ ‘.’__‘- ERASRS N . N N

Xicoe:

"‘
s«

:.-

WNAY

M N SRR A A

o,
L]
.

NN
.
0

AR

e

N R

IV,

-
R T i T

. 2
b,

ey

Padii ¥AY

-Eﬂidxﬂfﬁ

PG
S

LAY

a

PR RN
ll'n'_' N Y

- o~ - - P

¥, .‘!ﬂihh’b.. A ERPUPLENE TN D el Bk AELPELL -\~!FF-|F-.!r(-\.\.-\- oo RACRCRA AR S of b S T

’-¢‘- \.F'-

A

LT EO T Sy

S3UBJ4 3JUTPJODT] PUB SJOJI3\ UDTJEWJ0SUBY|
£'G aunbiy

.,‘-'.‘-¢\}\}

I

-
-

A
b

N
h)

e

o

Cal

(¥2) Wy

-‘,\)_

o

—

() 0] .,,\\\ Hw
,\\/IN z

;e 139

At SN
RN L,

-

AN

N oA At atd Al i A AR BT A i alia® AR et oy NPT AR W YD
AL IRALEGLEG NG S0 AN 2' Y e W, W W W L WL W VW Wy W WL W W WOV WK B Sl o A 00

o t. No robot is identified since none are involved with
this matrix. Both of these notations may also be enclosed
X by brackets and followed by a superscripted "-1" to

indicate an inversed transformation matrix.
. With this notation, several factors can be reinforced:

N 1) The motion of the system will be
described by the object's transformation

;Q matrix or Tro (t).

N
T 2) Since the grasp that the robots have on

the object is rigid:

i)
. ."-(\,'-"‘r L \"

Toh (rob, t) = Tonr (rob, 0)

for rob = 1, 2 (5.2)

SN
« & & 0_ 0

3) Specified initially as the data are the

4 S
72

. -

initial and final object transformations or

Tro (0) and Tro (final).

SAELL
L SN A

e
& &

Referring to Figure 5.3 and using sinmple vector

algebra, the following equation can be derived:

CRARAN

Tro (rob) * Ton (rob, t) = Tro (t) * Ton (rob, t)

. for rob = 1, 2;
= and all t > 0 (5.3)

~ Setting £ = 0 and rearranging equation (5.3):

|
»

PP AN

66

.5(}&\55

¥

)
P
PRt

IR

' 4" :_-r"f,\r Lt T A A A 8 T m AL T TN O 'f.'f~f\“f_: _: ".\"‘
- i b L) > L) L} L) L .

*

. ~ Ny vy mp et -
RN I.‘I.f P o TN s

PR O N

A A’ WYY vy At e - 2
LRSS £ .), G DI R B R A A B f el S A Sl A S Dl AN Vo -

Ton (rob, 0) = (Tre (0)]-t * Trp (rob) * Ton (rob,O0)

for rob =1, 2;
and all t > 0 (5.4)

Substituting into equation (5.4) from equation (5.2):

Ton (rob, t) = [Tre (0)]-' * Trb (rob) * Ton (rob,0)

for rob =1, 2;
and all t > O (5.5)

This result is substituted into equation (5.3).

Rearranging and solving vields:

Ton (rob, t) = Tro (t) * [Tro {(0)]-* * Trp (rob) =*
Ton (rob,0);

for rob =1, 2;
0

and all t > (5.6)

Thus, a <closed form solution 1is obtained for the
robots' transformations. Note that this solution can be
used for any robot for which the Denavit-Hartenberg
transformations can be obtained. Now, the joint angles can
be solved for using the inverse kinematics approach and the

transformation calculations above.

As defined above, the problem states that Tro (0) and
Tro (final) are the initial specifications provided. A
method is needed to generate the Tro (t). At this point,

the influence of path planning and collision avoidance 1is

ignored but the method of generation will remain the same.

P
g 0

I' 'r} ..l' -l. .I.

-

S

N o e

v e
[
.

»

e
?

Y

Y

AT
‘a‘_‘.’{.,‘-‘.

S

VRIS TS

;o

oy

7, T

A A L)

ALl C S

Ry
LN Y 1, 4

Any transformation matrix is basically composed of a

rotation and a translation matrix. The translation matrix
is simply generated by dividing the linear motion into an
appropriate number of steps. In a computer simulation,
each frame on the screen represents a particular instance
in time. Thus, the number of steps between a start and end
point is a function of the simulated speed of the robot. A
robot in quick motion would have large changes in distances
between frames or a 1low number of steps for a motion. A
robot moving slowly would have a large number of steps
effectively making the distances that the arm travels
between frames be small. Therefore, the number of steps is

chosen as a function of the desired speed.

The rotation matrix, however does not 1lend 1itself
directly to an incremental <change since it is composed of
orthogonal vectors. Therefore, the orientation must be
generated by other methods and then converted 1into a
rotation matrix. One method is to represent the rotation
matrix in terms of the six joint angles of an imaginary
PUMA robot whose base is located at the reference
coordinate frame and whose end-effector is located at the
object's coordinated frame. Given these angles, the
rotation matrix can be calculated through forward
kinematics and installed for the rotation matrix of the

object. This procedure proves to be a useful one for

68

-, 3 2 . A » N F o - \

I

ARR

e o "Fodet hd r's"&" ‘.-\.-.'.'

|

.

v

(NS

TN

-

Rl XA

SN

A adN)

s, f' l."l '_

'l',.".- 7 '-

»

g

"\ I‘I *r,'-

-
.
.

2 »
LA &

\ l,. ;'. ‘V. In 4

A

o2t

W

LA

Ll

S

situations where orientation changes similar to those of
changing the wrist angles of the robot are desired.
Unfortunately, the formulas for the kinematics are lengthy

and require extra computation time.

A second method is to simply define the orientation
through a standard scheme such as the roll-pitch-yaw
system. Here, a rotation matrix 1is inserted into Tr. at
the appropriate 1location to define the orientation. Thus,
the roll, pitch, and yaw of the start and finish points can
be calculated from Tro {(0) and Tro (final) and then these
angles are 1incremented as the motion progresses. The

rotation matrix for the roll-pitch-yaw scheme is defined

as:

CrCcp Crspsa - sfCa CrspCa + Srsa

ROT (a,B,T) = SITCB SISBSa + CrCa SrspCa - Crsa
-SB CBsSa CRCa
(5.7)
where "C" and "S" 1indicate cosine and sine functions, "a"
is the roll angle, "B" is the pitch angle, and "r" is the
yaw angle {17]. Therefore, given the locus of roll-pitch-

vyaw angles of the entire motion, the rotation matrix needed

for Tro (rob, t) can be calculated at each step through the

use of equation (5.7)

69

.', A AT A NS AR T T AT AT AT AT A \..\'.......‘_ _-'._. RIS -

9 g ey e e ", ; " o " . ey
IR SAA LA AAEAS AR LA A a0 204 00 AN RS A A AL S e et e e il B B/l Rt oh /B it Bl Al Lt 'y Pag W VN *af

xx
'
F-
s
o~
o~
5.4 Collision Avoidance and Path Planning Algorithms ﬁ
N
'
Several previous sections have discussed a variety of e
‘e
path planning and collision avoidance algorithms. At this ::
™,
S
point, the specific methods that were implemented in the L
simulation presented in this thesis will be discussed in S
detail. .
Human beings have an incredible ability to decide i.
<
their route of motion. Data is collected by sensors such :«
ey
~
‘w7
as the eyes for vision and the fingers for touch. Using g;

a
(4
"

this information humans can almost 1instantly compute a

.

route which will take them quickly and easily to their ;i
destinations -- not to mention the generation of signals to i:
the hundreds of muscles to accomplish that motion. iw
It has proven to be quite a <challenging task to Ei
develop a mechanical system to simulate the actions of a ;i:
human being. Until this time no one has completely and !}
satisfactorily accomplished this task. By identifying iz
computational features and cognitive processes, a 5:
programmer can attempt to simulate the intelligent actions 5}
D

of the human via computer control. g;
There are several factors which influence the choice !;

of algorithms in the <control of robots. These factors ;S
include such aspects as the speed of computation, E?
effectiveness, and reliability. The computer must be able 2}.
<

70 =

%

.

e L e e et T e e e S e

PR I e PR o i i Shab i~ e o A e Lo el 2/0oa%0 2" 0 0D g 080 4 00p 2 BN MY W e ¥y SN T

to identify the obstacles and route through-points quickly,
then determine an acceptable path, and finally generate the

joint angles needed to drive the robot through its motion.

A combination of several algorithms was developed
which provides a quick, and reliable method from which the

computer can generate a collision free path.

This thesis introduces the term "Striving Technique"
\ in order to describe the method by which path planning and
collision avoidance are implemented for the movement of
coordinated robots. The basis of this theory is to combine
several of the more practical and successful features from
other well known algorithms such as the Artificial
Potential Field Concept [10) and Configuration Mapping [8].
Whereas these algorithms were designed to drive a single
robot, the Striving Technique has been designed to drive

multiple robots.

The equations derived in section 5.3 require that the
matrices Tro (0), and Tro (final) be specified at the onset
of movement. Therefore, the task for the path planning and
collision avoidance algorithm is to generate an intelligent
motion for the object's frame while moving from the start

- point to the end point.

The Striving Technique first redescribes the obstacles

in the field of movement. Since the coordinate frame

71

NN MRS T I N N R S - c Sl . T

(SXTRES . W N . N
Ih’ (.(._1‘~JL1'.“. o Cailan _A’ :(..n A W s 1_-\A-{ 1-1 x‘ PP P SN -f‘ -\. AP A 1 A et at

[N }._c. ‘-. .l. .i' ",

‘e
»
.

e Y

AT

r] _'l - _'l

P
'0}5{" Y

4 g ORALARAN
AXRARE B RPN

.‘.‘\J‘l)".

.
‘e
-
"y

L

>
'\.'-(\’\f-’\, T

the obstacle

located on

is closely

movement, it is most feasible to

this single point as opposed to representing the

volume of the object. Thus,

controlled during the

represent the object by

entire

the dimension of the object is

shrunk to a point located at the origin of the object's
coordinate frame. As 1in the Configuration Mapping
Final s ™o
Position o~ -
\
\
\
\ Route
| \
\
\
\
OBSTACLE K Il
ENLARGED D Posttin
CBSTACLE
Major
Dimension

Figure 5.4
Configuration Mapping

72

. e, =

“~ Y . s _"a
RIS RN

e R S DN

TN AT AN NN

Lo -I'\-I' W

AT S)

-y m TS T TR T
-’ ,‘. ’._-.'

- v T e =

technique (8], a shrinking of the object to a point must be
complemented by an appropriate enlarging of the obstacles
(refer to figure 5.4). Since the object has the ability to
attain any orientation, the outer perimeter of the
obstacles are 1increased by an amount equal to the major
dimension of the object. The major dimension describes the
distance from the object's frame to its farthest point on

the perimeter.

Configuration Mapping has the potential problem of
"choking". Choking is a situation whereby the obstacles
have been enlarged to the point of eliminating all possible
routes for the robots to take as the enlarged obstacles
extend from boundary to boundary separating the start point
from the end point. The problem of choking is relatively
rare since it requires a large number of obstacles or
physically large obstacles. Therefore, an obstacle field
is to be chosen 6 which will allow complete motion and the
problem of <choking will not become a prohibiting factor in

the movement.

Thus, the Striving Technique defines that only the
origin of the object's reference system need avoid the
enlarged obstacles 1in order to prevent collision to occur.
Due to the configuration mapping, this avoidance only

involves comparing one point to the perim:ter of the

73

‘.- ,_.,'-".f«'/{l'u’n‘-
S .

NN R A A o A R G L e

S

[

TS

Lol

AN ANy
L

K,

3 Py " v
2 St

...'-(:-.n(.l'\§

'«."{' ™ 1-.551 ‘_7.".‘"[.

4

Yy % "x
o X

e

L)
*

S A l.:' -":‘.‘-. ~ N Y

S - e - .
‘ .:"‘_l. ':*. "” I l;"' LA

~—dy

AR N

o T3 g U gl

L,

N “ Ll . ; A . . A et A" e C e At SR AV AP W Cu VWA U g A
oy ARG o IR Al et Sl 2

obstacles as opposed to comparing all of the points of the

object to all of the points of the obstacles.

19
O O A Akt T

-

In the discussion given above, collision avoidance has

=

only been concerned with the object striking an obstacle.

N

The potential <c¢ollision of the robots are not included in

e

this algorithm. The problem of robot collision avoidance

$RPPRT LA

is solved with the implementation of the Graph Node Search

-

(Rt LL

o
< "'f

o
O
©

2

NODES

~

.
O
\J

o

oL

[

~no
(8]
Al

i
Falr

. 50, e
AN

Wy,

»

[T 777777777

Figure 5.5
Robot Nodes

74

: e e NaTa A e e At A R Tt T M AT A e T
N G G R A G S oy ."'\"Q'-.‘\"x"'\"\"'.’\""-'\."\". o e T

R ot Pt Bl A0 B B G0 B0 g0 Bt U A0 §a¥ A0 Yal et feb Pt * fat-hall S et St it et - v

algorithm [16]. This algorithm first identifies nodes
(Figure 5.5) which are located along the individual arms of
the robots starting from the base and continuing up to the
ends of the gripper parts. During the motion, the distance
is calculated between the nodes of the first robot and the
second robot, as well as the distance between the first
robot and the obstacles. Then, the distances are
calculated between the second robot and the obstacles. If
any of these distances fall below a "safe" value,
permission to perform that movement (as described in the

following paragraphs) is not granted.

The obvious problem is that of computation speed due
to the 1large number of nodes needed to describe the robots
and the obstacles. 1If each robot has twenty nodes and two
obstacles have ten nodes each, a total of twelve hundred
distances will need to be calculated for each movement.
This could computationally become very cumbersome. In
trying to decrease the number of calculations, several of

these distances which will never fall below the safe value

\‘_’ ,-';Fs—("'_'("}.ﬁ.

2

R
£ Cd

o

PN s

B T v ¢

-

7

=, |
‘rz'r -lﬁJY-‘- 3

w
)

can be eliminated. These distances, include for example, N
'-\ t
the distance between the bases which obviously will not $:f
b
present a problem unless the robots are 1located on a -
sliding base track. Even with these reductions, real-time N
{
data processing can still only be achieved on a very fast ﬁ:
!
computer. Y
\ O
\
N,
75 3
o
R
!'.'-
=~
T . o . Cm e e e e A
W N A T e e e e e T T N '_-.a'.\",-,.' '.‘:s.'x‘\" RSN T N e e \\’\‘ AR SNV

AL

A o l“
‘r:')\‘. "

y

) - I‘{ ’l ’f)‘_"{ ‘“5. »

| St B)
l‘.‘l.. =t

s

» " ’ L
'n."\"'. Ve o

-
w v
(I W

L)

NS

-

"~
~,

o

N

o
o

" . - S s) L - - r - -
R AL -, f."&’.'n.\f‘

Now that the collision avoidance algorithm is

implemented, a complementary path planning algorithm is

introduced in a combination of the Potential Field Concept

[10] and the Permission Technique. This combination 1is

then adapted to use with multiple robotic systems.

The name given to this concept, Striving Technique, is
derived from the underlying assumption that the priority of

movement is geared towards the ultimate goal location as

opposed to intermediate through points. This assumption is

made for the purpose of allowing the algorithm to be

applicable for fields of movement where only 1local

detection of obstacles is known perhaps through sensors or

a vision system.

The motion is initiated by first determining a point

in space which is situated an incremental distance from the

present 1location and on a straight 1line between the

object's present 1location and the end point. This next

point is then run through the various collision avoidance

algorithms to determine if it is achievable. If this

location is safe, then the movement 1is performed and the

next location is determined and checked. 1If the location

is not safe, then an alternate location must be found.

The choice of the alternate location is limited to the

immediate area and can become very complex for several

76

BRSNS

Wy v g Vg q@pm, v ¢ LERY LI AA LN W - OO W
AT AR AN T AT A A AT

LA S Sl ST TR L Rt Pull S, S T S N

reasons. The need for an alternate location was determined
due to a possible collision but the nature of the collision
is unknown. It could be an overhang that the manipulatcrs
must regress from and go over. Or it could be a slot that
the manipulator has fed the edge of the obstacle into,
which again must be backed away from and jumped. For each
individual type of situation, different recovery algorithms

would need to be implemented.

Due to this complexity, a simpler general algorithm
is chosen to determine the recovery path that the
manipulator is to follow. This algorithm handles most
situations but does have some difficulties with the most
complex of problems. Once the desired next-point is deemed
unsafe, the recovery algorithm is called. Here, the
computer checks a series of locations to investigate if
these locations are safe. The first safe location that is
found defines the next location that the object is to move
to and at that point, control is passed back to the normal

path planning algorithm.

The choice of the appropriate series of 1locations
mentioned above 1is a function of both the types of
situations the manipulator is required to handle, and the
speed desired. The speed is increased by having the points
positioned with more distance between them. A less number

of iterations will be required for points which are farther

77

*.‘ TN N N N ~ 7 .x-.\‘\\\'\.'\'-'\.“

AN §

A e

-

LA “y ¥

LS oS ol ol ol 'y

Y,

’

.‘-f-'z.rr'ro'-.-fff.r-r'f'-' -f-’ff.-a 'Ilf-f‘«'-f fl'fffflf-'-\"'-‘:f\;'\}'v

“iia2fa dia PRARRR AL e pie b g e S plite el e A hah g PuiaP fah fuf Sah ot ~ ~ - < P ‘& A"

PP AN LA o N N AN SR LA B L

apart, but poorer solutions (e.g., longer paths) will be
provided than if the points were very close together; which

is another trade-off in this process.

The types of situations will also dictate this series
-, of locations. A field where only blocks orthogonal to and
on the floor may require the recovery algorithm to go "up
and over" the obstacle. It may be valid to state that in
certain types of obstacle fields, the manipulators will be

able to skirt counter-clockwise around the obstacle. This

Y,

a5

series thus becomes gquite dependant upon the individual

]

task at hand.

The specific recovery algorithm implemented in the

. T

computer simulation is set wup with the <c¢riterion that
movement is to occur generally along the x-axis in the
. negative direction. Thus, the algorithm stipulates that if

the desired position 1is not available, then the next

desirable position will be in the positive x-direction. If

atafTe

that position is also not available, a point down from the
first alternate position is <chosen. Finally, if this
second position is also not available, then a position in
A the positive y-direction is <c¢hosen. More of the 1local
4 alternate positions could be added so there would be no
:S limitations in the types of movements, but there would be

extra computation time required. Therefore, in trying to

h Va .r - o J‘_\I\- _. \J's.r\f * J‘ -r -r.'- \- - J'_ .-,* \.f',\. \-‘.'\.""\ \. _‘.r\ \\'_ . _r\, R ,, .;_‘. -"-‘_.. ._,.::; h \ '\, N

Rk P T S

[SR IR PR
A -

ey b bty S Y

AR T T g g Vg T W] LA S Y N W W N W WV VW W, W W, W

increase the execution speed of the program, only these

three alternate steps are defined.

5.5 Concluding Statements

The specific theory implemented in the computer
simulation was discussed at length. Methods for path
planning, collision avoidance, and transformation

generation were presented which will provide the computer
simulation with intelligence to move two robots mutually
holding an object with an intelligence to move the object
through a field in which obstacles are 1located. The
obstacles may be of regular shape and size or may have
overhangs. The object is represented as a rectangular box
but may be of any size or shape which allows for a firm

grip.

79

A A T N A e N 40 A I P B P T N T S R T T T R Rt ey N R LR T

oSOy

B Pk

caThl €
'r‘ S

T AL
- o o ¥

£

[

A4

SN SN NF T p A LA AT L

CACA L

g fat o giat Q¢
LEalCA AR AR NN o) af oW

CHAPTER VI

COMPUTER SIMULATION AND GRAPHICS

ey

6.1 Introduction

Sy

The previous chapter presented several algorithms and

theories which <can be wutilized in controlling multiple

e T T T) ".

robotic manipulators. These theories included appropriate

-

transformation generation techniques, and path planning
and collision avoidance algorithms. The purpose of this
chapter is to describe the implementation of these various

techniques in a computer program and to describe the actual

processes which occur on the computer screen.

The use of computer simulation to analyze the motions

e
‘I!
N
Y
ll
I‘ 1
-
}

A

v

of robots 1is a standard procedure 1in industry today for

a s v,

«
Lg

several reasons. A manager can review several different

ANy

v

types and styles of robots and choose among them to fird

.
£

the one which suits the needs of the particular task at

LR}

hand. Once the appropriate model is chosen, extensive off-

[T YA]

line testing can be performed to identify conflict

LA Ltk a0 B 4
£ 4 ¢ T

situations, areas of possible collisions, and the most time
or energy efficient paths. Also, if the robot is to fail
and collide with a person or object in the work envelope,
there could be extensive injury or damage. If in the
simulation a collision with an object takes place, lights

may flash and buzzers may sound but no actual damage would

80

) ‘e &
3 "y i 2 P NS TR T TS 0 N0 2% Jie JUIUS e P T I T N AT LT L R YR LS " Ay "
.okl AT ASA Sy L) e * ’ . » = ‘h * “ }). s . ..' '~ .l L) !. N .Q- I “. |~ Q«lv' .' KB - f &0 - "' ’ ﬂi I o ~

A .f.;J' -4.{"‘:{{'.;{\-". '.“Q;'\' -t ,‘-\'ﬁ ‘n\,r_- 'F'\, w'.\ g \\\ b-w' -“v‘-"_\f\-'. \-g-(-.‘-.‘- ._-:'-.\- ...~\.‘\(__r\'.\- e e A
il Da il 5 L il " . Aaiadadathad .) " ¥ shbll

k)

P A e V'S T

occur and nobody would be hurt. The ultimate advantage is

b

“~
that of cost. It is simply less expensive to view computer ;
simulations than it is to actually run a machine in the ?
testing phase of the research and purchase. i

e,

The computer simulation "CoordSim" developed for this ,:

-
thesis research is written in TurboPascal, a pascal f‘
programming language developed by Borland International for
use on a personal computer. This language was chosen for
its complete graphics capabilities, ease in program

FPLLI]T G A

development, and available library of commands. Refer to

—F /7

appendix 1 for the program listing. (3
6.2 Program Features &
]

CoordSim is set up as a computer generated simulation Ay
of two PUMA robots each of which partially share a porticn

of the other's workspace. 3

The screen output (figure 6.1) is set up to display o~
most of the pertinent information which the programmer or)
user needs for analyzing the motion of the robots. The
main screen depicts a vector model of the PUMA robots. The o
individual lines represent vectors which travel along the o~
center-line of the robot arms. The scale of the robots is

exactly that of the actual PUMA robot in order to maintain

the relative size of the work envelope and the locations of -3

the singularities. ir
oy

81 i

v
&
)
-'\
A
AN

- « . - "
AT NN

v
o - Al

¥

L ¢

)

A g

P TF T E TN T AT N TR Y KR,

Jndyng wedbouy
1'g aunbyy

uoT31S04 un131S04
3Jn[osgy 9n70Sqy XTJ)ey UDTI830Y XTJJey UOTIE)CY
¢ 30004 [j0q0y .Umw ¢ 30904 [30004

-
O |

a2 Yy
5

Fae
Aasg
Ras
588
588
288

aueJ4

- 3)RUTP.O0)
.| 8auauayay
N 1000

¢ 3000y

82

satbuy
uop
¢ 3000y |

/

OO0 OoO

OO OQDOOoOO

sarbuy
jutop
[30004 —

AOPUTA 1000y

8833388 8838888

N\

uo131500 QoY UT Sj000Y 90N

'.-',.'.-..~ --"{.f!f-f‘f' - |.'-'.-{\..“,I'."\-"i**‘$’)-

P e "\..\“ \ o

o

.. J‘:{.l ~

N] - SR TR AL I L T KR AT AT o S T S LY SW g PR ‘. P Tt
o Yo T _aw S - LR B - - ’ R A - - K

L an e

RN A AR A A IO A A el e B LA B B 00 A A S 0 4% !

Around the perimeter of th. screen are several sets of
numbers. Starting with the bottom, left hand corner of the
screen one finds the rotation matrix of the left hand
robot, called Robot 1. The next matrix to the right is the
appropriate rotation matrix of the right hand robot, called
Robot 2. These rotation matrices describe the orientation
of the hand coordinate system in reference to the base
coordinate system. In the bottom, right hand corner are
the absolute, world frame coordinates of the two robots.
The origin of that frame is 1located in the plane of the
screen at the bottom 1left hand side of the robot window.
The user 1is looking at the x-z plane with the y-axis
directed orthogonally into the screen. The final sets of
numbers are the joint angles located on the right hand side
of the screen. These numbers are output as degrees and
represent the values of the joint angles of the six joints

of each PUMA robot.

From the keyboard, the user can control several
inherent functions of the robots (refer to appendix 2,
User's Guide). These functions include increasing or
decreasing any of the six joint angles of either robot as
well as generating cartesian movement of the end effector
frame of either robot. This way, the robots can be placed
at any position and orientation in the appropriate work

envelopes.

83

L

.- ,
- h,‘b‘.‘.

P

&S WYy

2

'l"\" v }'l}‘

A -":}',}

I‘:":'l'r‘tl-,- -y

L 4

Tl EAL

"o

~f\l 1\1\1 ~1'$r~r‘
i L., - .

There are several characteristics of real-world robots

which were not represented in this simulation.

characteristics are briefly outlined below:

1) There 1is no 1limit on the value of the

joint angles. In other words, a particular

joint can rotate around indefinitely with no

effect on the generation of data.

2) No force, acceleration, or wvibration

considerations are made. The purpose of the

simulation presented in this thesis

test position control strategies and

velocity or force control functions.

was to

not

3) There 1is absolute position control.

Real world robots have characteristics such

as compliance, weight, and inertia
affect the actual position of the

Therefore, the position which the

thinks it occupies 1is not necessarily

which

robot.

robot

the

position it actually occupies due to these

inaccuracies. The computer generated robot

has no weight or compliance. Thus,

it can

be assumed that the indicated position is

completely accurate as obtained from the use

84

.r.r/.r-.r,.,..r s

v . = . -
LA RS S ARG x SR ~ \ T A

-
_‘...,.r et

These

“\’\ N \ -

e % e Y
A

A AR RN

S

h]

l.nvgl.l,
2l L)

TV

y LGS i
1_..‘ P

Ca g &

* "'.-'\l' T

PR e AP

O 47 s

R

Y

R P
R At N NG AL S R

SO AN
2

s % T

I:’-,’s o \"- %

5l

T A

NGNS _'::-

- g2
£

|

5
e
s

s s i
L A
Tete

el

(]
>

D
L

\f
1
A
4 A

D

AN A AN A AL A AT A AR, TR Ll T4 Y I g Sl ACh . .

of kinematic and inverse kinematic
calculations.
4) Since the speed of computations does not

allow for a series of movie-like movements,
each frame represents approximately a scaled
ten millimeter displacement of the end
effector, or at most a ten degree change of
a particular joint angle. These values were
chosen as they seem to provide a realistic,

real~-time movement on the screen.

6.3 Utilization of Modeling Techniques

There are eight basic motions which this coordinated
robot scheme has been programmed to perform. These
functions wutilize various algorithms which have been
developed in previous chapters and illustrate the generated
motion of the manipulators on the c¢omputer screen. The
purpose of these functions is to index the level of success
of these algorithms and test them under various situations.

They are presented below in increasing order of complexity.

Routine 1 is a graphic illustration of the
capabilities and range of motion of the manipulators
(figure 6.2). In this series of movements, the robots are
directed to perform a drilling process on a cubical object.

Robot 1 first moves to a hover position over the cube while

85

\ﬁ;ﬁ‘ R e S oy X = g SRS e T P R

e it il b e

.

st 1] 1 st .
| | 7
j -1 00 15890 P
| e i
\ il K '
‘ i i} '
39.”7‘ . :’
N ’ s fds o
\ ‘ T | T it N
a \ L \ L |
164, -164.)
3| - | A L.
0L 0000 00 8.0 R0 15340 35.60 0901000 0.0 9.0 -0.975 0.9 (5360 35.60 &i
LI I WS 0 -0 NI IR RN R R ETRTIR TR] e
R R R R R N CO RN LIS L -Ta s LR] o
K
Frame 1 Frame 2 o
= -
[]
T
! e
r
1.0 41312 Y
Ry 1 &
an e €
Rt A 't
-120.48 BHXT! i
13,68 -16,48 Y
— an .8
R 1)
[-139.2y -139.29 o
‘ 185,14 1.1 N
| SR T -1, N
i ,.
>
0570490 0462 -0.060 -9.975 -0.99) ma s LA L L my e -~
CISE-07ST 0T QHS 695 4008 -9 SN 00 L0668 6§ 9% 0.0 8 S
RGN AR ET AT i RN R R R R KRR R \ -
Frame 3 Frame 4 -
st vl X i
s - ¢
! e b t d
! T S i
! 8en - »
' 4 N ,
1 -165.87 ; 1
| g -
| 1.9 T - '
! BTRT
} 54,52 ’
; RHRT] - ‘
| ‘ -
U0 LI 00908 099 NI I AW RN e TR e
-0 -0 TR 99 -0 Sl R TR R R I
R R WS OWAL o Wi v a. P cet vk

Frame 5

2/2

R F YOUNG

F/G 13/8

THE COORDINATION OF MULTIPLE ROBOTIC WANIPULATORSCU)

ARMY MILITARY PERSONNEL CENTER ALEXANDRIR VA

g’ g W e ars e

Vg g

; “\“_1_________:0 pas \\?;r;"-

- 315
—_— 5 W§

==

it fE =

:: =

T2 s s

-
J

RN TR
B e TR RN

e Wiy *:
l!:"{‘;‘ l\. LD l..‘li‘,“,:!l:t Y, 'e.::‘::...

9,
..............

R T Ja Npt de" eV 0 2’0 20 p°0.2°0 .07V, 4 W g ¥ KERNARA R Vo dUS WHLYUNLUN Y Yo %" 4 4 v (P by FRAY XN et Sab Ny Iy y Y h‘g'-fv

i
robot 2 moves to its drilling position and waits (frame 1). :ﬁ
Then, robot 1 drops down onto the cube and grasps it (frame 'i
2), and returns to the hover position. Next, robot 1 moves i?
(frame 3) to the vice position where it holds the cube for :i
a drilling operation (frame 4). Robot 2 then drills two _;
holes simultaneously into the cube (frame 5) and retracts }j
the drill (frame 6). %ﬂ
4
This routine also illustrates the use of coordinated zg

4

-
-

robots where one robot is a tool and the other robot is a

L)
-
-

Tt

-

smart vice. The vice is able to assume many positions and

v
.-

=

orientations and thus makes a very versatile machine with

x
2
o

P

which to perform intricate operations.

. dv o 0 B By &

The execution of this routine utilizes the procedure

I
RobMov as described below. The routine is designed to move ;»
-
the robots from their present location to a new location as \?
defined by the new set of joint angles. Therefore, the]b
n
motion of routine 1 is generated by specifying a series of Q
R
points and then moving the robots to those points k}
consecutively via RobMov. In this sense, the routine R
b\
simulates the use of the teach pendant where each of the Ef‘
Ny
robots is taught a series of 1locations to travel to with ;}
the time the robots reach those through-points being
Iy
closely controlled since the robots are to be coordinated. Ny
N
N
a
87 ~
N
N
iy
:f?ﬂﬁﬂ{ﬁ{ﬁﬁJﬁ{{dVﬁffdﬁﬁﬁﬁ7{?36%6&€€Q&€€*?'?VVV?$?FT?*€;?$ﬂ

-t

e -

- e

I oY,

RS 0
O ot M s

Routine 2 introduces the type of coordination where
the two robots are simultaneously holding an object (figure
6.3). The purpose of this series of movements is to
illustrate the accuracy of the transformation generation
theorem as presented by Lim and Chyung [13]. As they
showed with their Rhino Robots, routine 2's series of

frames 1indicates a progression of movement composed of a

-21.99 U
i i
KT kE
N u.
035 RIN]
-84 Bty
— I — I
i H] /‘r U
1 ’ (X))
.4 ! n.u
-ti.0 ‘ IR
' |
LA 000 0.0W 1900 0.900 -0.000 MEA R L] LNO S LW 100 0.0 0.0 ETT)
G0 L0 BRI 003 1000 0,00 AN D |) UWO-LNE 0§ -1 -6 Wy
G810 -0 000 -L0w O R IR X XX
Frame 1 Frame 2
l
.30 4500
ol A&
RR .
0. (¥
i 2.4
0.0, -5
|
1556 12,28
1.6 .02
wn 5.0
.00 080
345 5.0
15¢.5¢ RUR
g L WO LR kTR
. -l AL . i - -4l -4y, . -1. . . -1. -0 4. -4s.
Ve LN LR LN LN S S | L 0L -6 0L e st
Frame 3 Frame 4

Figure 6.3
Routine 2

88

370 % ot T R LW T Y e Y TSN, 0 LIRSS N AT
Fm AT RSN R A 2O N S G ARG AR e

- - v

L S W e L

r
-'.. - -

o

F 5o Ve a'k 2% 2" 1R &° Soiaath 448 at WL PL W UL . U WUV U AR O A S R A R R VAR Y e av. o I " ‘o Slaaba gb 2l "a¥ "of +,

B0 translation, and rotation only about an axis perpendicular
to the X~y plane. The start and end points, and
orientations are arbitrary values 1located within the

object's work envelope.

{ This routine also graphically illustrates the object's
{ work envelope as defined in chapter 2. In the last frame
)

*m of the motion, three arcs are drawn to represent the volume
R from which the object's coordinate frame origin cannot
b .

é& exit.

Y

The method used in routine 2 simply increments the

oo position vector of Tre, then calculates the robots'
L

y
‘% transformations via NexTran, and finally draws the robots
~‘ and the object in a 1loop for however many steps are
iy

L]
P desired.

NS

5-

‘l
v Routine 3 represents motion which is extended to
3;* include any rotation of the object's coordinate frame. In
¥
[
:: this routine, the representation of PUMA Jjoint angles is
gl
o’ utilized to identify the orientation of the object and to
' calculate the rotation matrix of Tre (refer to section 5.3
N for a detailed discussion). Figure 6.4 illustrates the
' start and end point of the motion which 1includes a
Wy
?3 translation between arbitrary points as well as a change of
!

" thirty degrees in theta 5. As can be seen, this rotation
2 is not simply a single change of the roll-pitch-yaw angles
>
9 89

o [C A M rdR d R "D "B * e [P LR P Y [P | { Y -
S et A S AT G 0 A ST T TR "%&h’qu.rwutn\..\mdmfu.ummm .

- -
AL W,

T NN AN UV

-y

- - - - - n L} - - - L] - - - L) - - - - - - L) - - - - -
.". o WG ,ﬂ 7, J'."V o i“f_-l‘_v‘ .- o .r .\‘. _‘J',‘ ",

W\ T M T RN FON ALK O RIS Ta g alta ata- oty tg" « R .0 el D 60" el b Sh &

but it effectively performs a combination of two or more of

those angles.

2.9 N
18,58 00
~4.58 1.4
f“ 3%
-19.35 5.4
ST 162,43
10.9 0.4
IR ne
o0 ; -5
“32.49 an
-1l (.}
L0000 6. MmN L6400 004 0904 -0.062 0.0 883 .46
BN ST R OS99 LS 0B 0268 T RTEIE
L0 898 -1, Sk Sen 0425 0B NG -0 S 026 -0 0 wh wh
Frame 2
Figure 6.4
Routine 3
The basis of this routine 1is similar to that of

routine 2 with the addition of calculating the new rotation

matrix of Tro while incrementing the position vector.

Refer to figure 6.5 for the corresponding flowchart.

Routine 4 (figure 6.6) uses a roll-pitch-yaw angle

change instead of the theta angle change in order to

generate the orientation matrix of the object’'s coordinate

frame. Here, a thirty degree increase in roll, followed by

a twenty degree increase in yaw, were implemented with a

translation. Again, the figure shows the start and end

points.

90

o W W

Lo

Ty
Sete

S

-
-

f,
T

AT =

L3
S &%

R T I I s

WO VOWE WU WU YUWUS

ENTER ROUTINE

v

Determine number of steps for movement to final position

]
t

v

Determine change in representative theta

——— —— i — T —— - - - o —_

Calculate rotation matrix from representative thetas

v

Form Tro from rotation matrix above and
incrementation of translation vector

v

Calculate robots' transformation matrices from Tro

\'4

Draw robots

v ,

—————————————— loop for number of steps

v

EXIT ROUTINE

L Figure 6.5
Flowchart of Routine 3

.

o K

91

. - -
-

.

5

Y

bl

oy S T e o e L A T o i i P B T e P P i L A S AN

N

2am 43% 4n% aV. da® €f 2t

R AR R AN AN S U AN T RYOR W W ALK PR TR AR RU T NG W 4°2 870 4% 4 a ava 40" U J W NN

25,30 -9,
T B
.50 -
0.08 -n.g

.0 U,
25,397 2.4
1€.4 -16.09
— 185 .9
.4 1.4
‘ " 1.0
| s y 3.4
] f—l—'—|~j 18,4 -4.513

S e— {

UL 009 .99 1600 9.000 -0.908 .30 4L §.500 0.0 0.2 1.9 9.0 920 N5 3004
DOR00 1000 w008 0.30¢-1.000 -0.00 4809 -840 fF G236 -0.048-0.000 0.330 0040 0.0 LR I N A
B0 0.000 -1.000 -6.080 0.000 -1.086 U X CoR 28 0000 <0000 -0.2%Y -0.000 -0.56¢ N)

Frame 1 Frame 2

The
chart of
instead

calculate

pitch-yaw

Routine 5
coordinated graph
similar to
node search

determined nodes

collide.

computation time

calculate

L P P Wy W * -' ' S ~l~l Ta-

2T, - -~
{ Anc UnGL A ‘I‘I.“ v Y, D." ™

Figure 6.6
Routine 4

procedure used in routine 4 follows the flow

routine 3 (figure 6.5) with the exception that

of using the representative joint angles to

the rotation matrix of Tro, it uses the roll-

representation and equation (5.7).

(figure 6.7) demonstrates the use of the

node search algorithm. The movement is

routine 2's except at each iteration the graph

is performed to test whether or not the pre-

on each of the robot arms are likely to

This routine also 1illustrates the increased

required between the frames in order to

the distances between the various nodes.

92

.'OA Yy Ao - . . \‘ X NN

W By

Routine 6 illustrates a potential «collision as
discovered by the graph node search (figure 6.8). The

motion 1is a translation plus a gross yaw rotation of n.

ENTER ROUTINE

!
v

Determine number of steps for movement to final position

Calculate Tro of the next frame

v

Are any pairs of nodes within the safe distance?

no | yes |
v v

Perform movement Stop movement

v

--- {jLoop for number of steps

v

EXIT ROUTINE

Figure 6.7
Flowchart of Routine 5
This yaw rotation causes the arms of the robots to spiral
and twist upon themselves (a twisting collision). At a

certain point in the progression of movement, the algorithm

93

~
P N AT AT Lt At AT N BT AT s et A A el W R S K Pl VA W W - L S R MY M AT AT T R - g " -l-.-—q----’
A o,l KN “’ 2 ., ~ . .. 3 A"""\, '.'F.- -f . ‘.‘..'{ ’.. '-Y M N\ ‘c Bad .. ™ .0. \’ .0» \ \ . 5 ~ A . N h\\ > .‘ \.~ ’

RIR

detects the potential collision and causes the movement to

halt (frame 4).

Routines 7 and 8

introduce the implementation of the
collision avoidance algorithm (refer to figure 6.11 for the

flowchart). The difference between the two is the series

0.3 2.8
185§ 1.4
-4 -0
N K]
3.09 1m0
-0.35 1835
-10L,43 o -116.48
1458 -2.8§
2.9 0.2
A , (X]
il £
. 7 [I::] -t
1000 9.990 0.090 1.999 0.800 -9.000 0w own 0.000 0500 0000 0000 <0500 0.0 e Ny
00 -1ae0 0.900 9.009 -1.000 6.0 TR BY| -0.560 0809 0.0090 -9.500 .09 9.980 ISR
G000 0000 -LWG -0.900 0.000 -1.000 sS4 S 9.090 -0.000 -1.900 9906 -9.990 -1.900 %3 N
Frame 1 Frame 2
"1 INODE COLLISION WILL ocCuR |
INENENT WA BEEN TRZEN
1.5 2.0
142 R
-1 -50.19
X X
Q.4 LRY
2.4 | 4.
[UL 16,28
‘ ! /T X L
| -2.725 -58.03
! . X} X
——— .49 8.0
e ‘ -36.8 L
! ae
E 3-8 00 0000 0951 0.999 WG WNE | LR -0 008 -0.95 -39 9.980 19053 2449
C-e 8 G338 R0 -0.351 000) Gowe 20 W R 05000 -6 0951 -6.008 AL L8
0 000 <1060 -0.000 090 -L.0w (NN RIRETRR RN nu %L
Frame 3 Frame 4

Figure 6.8
Routine 6

94

D W W B s e eg—

AL R

"V\An.tll"fl‘ :

Ol e e e -

«Tete yw

K h

.

n Y N

A

W
N
Oy
4
(]
¢
W,
"
()2
.. -0
i ¥
-85 NN '
'l (X] g
e 14 "
Rin BiN] Y
-0t -12.48
' i = 4 :
i 8. <
2.4 -3.5
G T -181.¢ -1,
— ;
A0 0 .00 9.009 -9.600 N 0980040 0000 0.999 -0.846 -9.900 .4 n 5
i%imﬂﬁakﬁiﬁi% ﬂﬁ%%ﬂ -0.08 -0.090 0900 -0.046 -0.999 -0.000 KTREIN TR S
0990 0.996 -1.906 -4.606 @.600 -1.080 0.4 S0.4? 0.999 9.000 -1.890 -0.990 0.000 -1.000 HATEE IR] oy,
R
Frame 1 Frame 2 o
OTHNG 0K TacL MIOTDING OBSTACLE }
0"
L4 1.0 .
-1 14 -23.5 04
-1 -2 ot
" N ¢
2.4 %] X
Skl - $
-130.46 -190.46
154 — -19.2 u::
i i 3
104 i ' 2048 i
-122.49 4 Eﬂ -122.60 ?
U
{ | 0
43”%H@0ﬂ0 9.999 -6.149 -0.260 86 39957 |1 Y0140 0600 .95 -0.148 -0.500 1Le 295 o
G0 -19% LD -0 30090 -0 e S0 4.2 14f 0950 49307 -6.(48 -0.99 -4.660 e i ! 1§
Doudee Q.082-000 -0.090 0.009 -1.060 nes N T LR LW e goe-lea A K x
o
Frame 3 Frame 4 N
4 Y
— ; — LS
o >
.
3.8 T ! 3
-34.9¢ 640
$.30 8.2 LY
4 t ,
. 48
R \ T “ 3
- " A o Y
-1, / -5
—~ F> 3648 7 LS o
.40 P [3.6 -
L L 1“3 | } Jﬁi
N ? - | O [!
| | ’ t w
- — "
AR L IR LI TRV TN 0966 -0.500 0900 9.36 -2.590 -0.000 WMy .
D020 -0 N 0202 e $ e i - -y <2 S6d -0 0ok 06043 -9.560 -0.866 -0.900 -1 -0
| S0 0.0 -0 -0.000 360 -1.00 . 10608 Db 00001000 -0 0.0 -1 ey W)
Lt
Frame 5 Frame 6)
)
» J *
Figure 6.9 Q
Routine 7)
» LY
13
*
95)
]
[y
L)
.
LBy
»
A A N L PN PRIV A R G S LT Y TN N A 8) 'u’w{~v~ " fs“nfo\F NN]

AT

¢
}
t
t

PN

-l -

v
%A

T T N T O T o O O O o Y S O R Y X Y UV IR TN U U VT OV IS S VX, X7 7 R W,

Y S A I Y,
O RSN U Al Al

of recovery steps taken once a potential collision is
identified. Routine 7 (figure 6.9) shows the object
driving towards the goal position (frame 2) until an
obstacle is identified (frame 3). It is assumed for this
routine that all of the obstacles are box-like in shape and
orthogonal to the floor so the recovery routine states that
the manipulators are to move up and over the obstacle
(frame 4). Therefore, each of the alternate pcints is
simply 10 units upward along the z-axis. Once a clear path
is found, the computer regenerates a route to the goal
location, and the robot continues on with its motion (frame

5) until the goal is reached (frame 6).

Routine 8 implements a more intelligent recovery
routine (figure 6.10) in that the obstacle shape is no
longer limited to cubes. Here the possibility of
overhanging obstacles is introduced and thus the assumption
that simply moving up will provide a solution to the
avoidance routine is no longer valid. Frame 1 illustrates
the obstacle field. Note that the obstacle size has been
enlarged in accordance with Configuration Mapping
techniques. The shaded box is the actual obstacle and the
box surrounding the obstacle indicates the boundary which
cannot be <crossed by the object frame's origin. This
boundary is not increased uniformly around the obstacle

since this motion as defined, only has an object yaw angle

96

=

L=

P

o P ON AN

SRR LA

.
v oid

W R B A A A R R A I A

. L)
Un % ™ RJOMM P M /Ui A A A A LA A e, I g B ¥ »ﬂ

IR ARG

‘3t

°, YU AT N ORI RSO LR KL n 8% 472 030 §°2.4"2 8" I 3 "
favornsc oxstacit
2.3 .91
1051 A
1554 -6l
¥ ¥]
W 2.1
-29.35 BRIk}
_ -1t ' . uh
1. ~ .
| an ’l \ K
| i M=n &
| O : B o
1 1
L0 L0 0.9 1090 9.999 -0.960 nLW QLN 09 0.0 .05 0959 -0.00 -9.096 605 415,99
000 1000 0.6 0009 -1 060 -0.680 BTRUINTNY O R -E a0 0999 0,008 581 -
V00 0900 -100 0900 9,009 -1.904 LRI TN G090 1000 -0.690 9,090 -1.609 R %)
Frame 1 Frame 2
WOINING OBSTACLE MOTING ORSTACLL
U4 2L
16 12,64
STR]] Wl
X} X
.08 4.9
-8 5.1
]
]
-18.9 -~ [1K}
; ‘ B 1.8 — T we
| N i i
f — 5.0 L e -1l
| ¢ﬂ1'1;|; s | i S
; . : = : |
T ESsh-RIE 7R 899 -1 0.6 WAL ML ML LR RN W0
Dot lee -4 dddd ci (B o490 -6.900 =333 el 18 -001 2.208) -2.1% -2.9%4 -2.0a0 ¢80 -S4
D abee b -lede 000 6.0 -1.00 RTERUE A R R T LR
Frame 3 Frame 4
| "y * j
i | ‘, ' t {
IETITRE | o
ST Lsen |
; B Loan
‘ ; 3 i .
- sy ! /‘\ | A
J -/Ah\ | | Jﬁf5 h | lxgd
~ . : . i) -133.
! < = 1 e = - |
} - U [NV ! , . IR
: R | e
; s | {_— ! |-
| ' ‘ | ' ‘ é
TN s LRI R R KR R IE I R R s e |
R I R T X] T 00 R D S9-B 0 0.0 MR TN
AR da -l 0000 009010 1590 i C a0 RE00 D0 G990 0 o6 -10W R
Frame 5 Frame 6
Figure 6.10
Routine 8
97
WY OV, G (R Ge " LGNS Mo -. . '\'\' R SANKSES LSRN AR O OR

A A N AN

T, v, T
. e

AN

X

e

LY

S5

yy

.
[y
x

oy

"‘:

y el i d
Lo X R WX N

-
o

| B

e

‘S.

eay

A

o

.t
L x

" 7{:}?'

g
o

é

5, L

O

NS

Vo

‘. "‘\.III,' L]
".‘- "-.‘f

. gat
R \-

T T L G N A A Y 0 I e A e N D A A A N N U o

aW oM W U oW, VoW, LS S o o gt 020 Bat et SaV Sy Sk Bet fuh S BuB Boff 85¢ 0a* &

change. The purpose of this 1limitation is to provide a
more vivid means to illustrate the output. This does not

constrain the algorithm in any way.

The motion initiates (frame 1) and progresses until
the next desired position is deemed unobtainable as it is
occupied by the obstacle (frame 2). At this point, the

computer searches successively to the following points:

1) Alternate Point 1 (APl) is 1located 10
units in the negative =x-direction and 5
units in the positive z-direction from the

unobtainable point.

2) Alternate Point 2 (AP2) is 1located 15

units in the negative z-direction from APl.

3) Alternate Point 3 (AP3) is 1located 10

units in the positive y~direction from AP2.

The alternate peints are referenced from the
unobtainable location as indicated above due to the
fact that theoretically this unobtainable point is closer
to the goal position and near the boundary of the obstacle.
Thus, it provides a more desirable reference point from

which movements may be calculated.

Frame 3 indicates that progression to AP2 provides

movement under the obstacle and then frame 4 shows that

98

- '{_'J'

~x]

1% &

-

>

iy

w‘r ’

. Ay e

P, ¢ CLC T .8
)

Soly

e

AT AR

PO X

7

:‘l\

[3

]
LIy

LRSS g'-;x,'lj

A

s

‘l‘,

$
'5.'1-
J
A
DT
3 'J'\"J' n" ..

ENTER ROUTINE

Calculate Tro

of the next frame

v
Is the origin of the next Tro within the| no
enlarged obstacle boundary? -
1
1]
yes | !
v }
no :
Is AP 1 within the] --->]Set Tro to AP 1] --~---- >
- H
enlarged boundary? !
]
]
yes | '
v]
no H
Is AP 2 within the}] --->)Set Tro to AP 2} ---—~-- >
- !
enlarged boundary? |
]
[}
yes |]
v]
no {
Is AP 3 within the] --->{Set Tro to AP 3f----—---- >
- |
enlarged boundary? v
yes | Perform movement

v
'
Stop movement v
Loop until

EXIT ROUTINEf<--- lgoal is reached

Figure 6.11
Flowchart of Routines 7 and 8

99

T T T T R ST SO T TV Y TR

progression to APl allows movement up the side of the

- ow e ay

obstacle. Once the manipulators clear the obstacle (frame

5, the movement is again initiated towards the goal (frame ‘

6).

3 Note that while the object 1is in the enlarged
o
) obstacle, no collision occurs unless the origin of the

object's coordinate from crosses that boundary.

)
f 6.4 Subroutine Definitions !
) '-
\, The following is a summary of the various functions, o
procedures (subroutines), and programs utilized by the =
simulation. Refer to appendix 1 for a complete program [y,
}
V listing and variable list. .
Function Atan2: TurboPascal does not have a math |
’ [
function for the four-quadrant inverse tangent function. ;
oy
Therefore, this function is written to input the numerator
(num) and the denominator (den) as real numbers and returns o
: r
X the Atan2 value as a real number. P
’: Function Pow: Again TurboPascal has no routine for "
N finding a number's power greater than two. This function ;
inputs a real number (x), and the real power (y) and e
5
: returns a real which is X raised to the y power. j
X R
-
‘: Procedure Envelope: This routine draws the object's .
L] :\
work envelope onto the screen. v
L]
' v
100 .
’ .
] v
i Nt

- o - - - - - " e .
NN AT ST R SRR T A
! B - ()

N
< e e Tyt T A T S e
LSRN ,-.\\' -.'\"'\" Y

D e e e e S R e e e

La't g P 0 0 0 0 8 G h N g ah Va0 A U U b il Vol Ra 98 €5) ¥l it 9.0 Wak G i8 00 €9 0 'y O R TR R R

File Graph.p: This file is compiled with CoordsSim in

order to provide several TurboPascal graphics functions
such as drawing lines (Draw) or filling an enclosed shape

with a color (Fillshape).

Procedure Coordinate: This routine inputs the joint

angles (theta) and the transformation matrices (trans) of

both robots and returns the world coordinates of the nodes
on each of the robots (coord). The nodes are defined as in

figure 5.4

Procedure Node: This routine inputs the reference

coordinates of the nodes (coord) as found in procedure
Coordinate and returns a Boolean value (collision) which
when true, indicates that a node on robot 1 is coming close
to contact with a node on robot 2. This routine is used in

the graph node search algorithms.

Procedure CalcRot: This routine inputs the roll-

pitch-yaw angles (rpy) and returns the appropriate rotation

matrix (rot).

Procedure CalcTran: This routine inputs the joint

angles of both robots (theta) and returns the appropriate

transformation matrices of each of the robots (trans).

Procedure Step: This routine inputs a start and end

position of an end-effector (start, finish) and returns an

ot g RS

P 2S5

WL RES

CC% 5% RSN

X E

)

>
¥ o
Kaatens® o

RN TR

Wy oy o
N SO

PR W M N L G I W T R S T O T

integer which represents the approximate number of ten unit
steps that there are between the start point and end point.
The purpose is to have a uniform, ten step movement on the

screen when a robot is to move.

Procedure InvKin: This routine inputs the
transformation matrices and characteristics of both robots
(trans, chars), performs inverse kinematic calculations,
and then returns the joint angles (theta). The
characteristics of a PUMA robot describe the arm up/down,

wrist flip/no-flip, and shoulder left/right situations.

Procedure Border: This routine draws a border around

the screen and divides the robot window from the numbers

which are displayed on the screen.

Procedure DrawIquad: The graphics functions of

TurboPascal reference the upper 1left hand corner of the
screen as the origin with positive x values increasing to
the right and positive y values increasing downward. This
routine transforms the origin to the lower left hand corner
of the screen and emulates the first quadrant of an x-y
coordinate system. Also, this graphics screen 1is 640
pixels x 200 pixels; therefore, a point (100,100) will not
be located equidistant from the lower and left hand side of
the screen. This routine also numerically compensates to

make the scale on the x-axis equal the scale on the y-axis

102

''''' L Y iy

N N D R O S SN

", e Bt §¥

LY

WA

Sl o o 7

R R
k3

h'S
N

..
) ‘v h "(X ‘o,l‘:!:

and produce a graphically correct picture for the user to

see.

Procedure CircleIquad: This routine draws a circle on

the screen in the coordinate system described above.

Procedure DrawFrame: This routine inputs the

transformation matrices, joint angles, and node coordinates

{trans, theta, coords) and draws the robots on the screen.

Procedure MulTran: This routine multiplies two four

by four matrices (tranl, ¢tran2) and returns the product

(prod).

Procedure Nextran: This routine inputs the

transformation of the mutually held object (Tro) and

returns the two robots' transformations (trans).

Procedure InvTran: This routine inputs a

transformation matrix (tran) and returns the inverse of

that matrix (invtran).

Procedure DrawBox, DrawSqguare, and DrawBox2: These

routines draw the various objects which are being held by
the robots. It also identifies the origin of the object's

coordinate system with a circle.

103

'¢|..‘ S AT AT '-r‘.r.rza‘w.r.r‘ ‘4.-:.: .-.r.a-.n.r'.r'.-'.r‘.- S AN SCAC AR AN A A '.-v

v *.v ALY ALY S S "l L

9 B

f..f.‘f

(TRE R FOPPOR YOI IO T TOX TOF T T VR PO TR T T U S T PO S T T N v S L U R P T O T O O O T TR T T O PR O

\f~l~\r\ s i’.‘

e N AT A T

Procedure ThetalIncr: This routine is similar to Steps

except that the number of steps is a function of the

largest change among the joint angles.

Procedures DrawObst and DrawObstl: These routines

draw various obstacle which are used by the main program.

Procedure Robmov: This routine moves a robot

automatically from its present 1location as identified by
joint angles (theta) to a new location as identified by the

new joint angles {(thetaNEW) in a uniform motion.

With the definition of these various procedures
contained within CoordSim, and the routines described in
this chapter, the implementation of the algorithms in the

code should be apparent.

6.5 Concluding Statements

This chapter has described the computer program
CoordSim. Included in that description is an explanation
of the purposes of the various procedures and routines
located within the code and the manner in which the
algorithms developed in past chapters have been implemented

by the computer simulation.

The program has been tested under numerous situations
and has proved successful under all of those tests. Thus,

a complete, and viable simulation tocl has been developed.

104

N A, ‘.\.:\.‘-‘_.-\.-.‘.-,P. AT A A A

~ \-.._.\:\ . -\.' .-\-._‘.-\

-
Y

R

DL et

)
r

""',' '(-l P]

s

P o
‘.‘4‘ '.

'l ‘.. .. d
o

AN

The following chapter discusses the level of success
which was achieved by each of the routines as well as the

theory it supports.

105

f.: oY

Ty iR R PR L S R RS RIS IRIRIE SRR E Iy’ N S P) o T T g a N Ta T p =g ®p ? A g% a ¥ a~a AR AL AL ~
s Lo .'\3""} I Lol o Py Ey ..t- D "'\“-'“ "" A .'~~ 5 AL -,ﬁo‘n ‘ ~

AN

» .

.__\') . " ‘..,'\ '-”'.._\' '. '.,'.‘_\,5 .‘\ TR S

CHAPTER VII

RESULTS AND CONCLUSIONS
7.1 Discussion of Results

There are several problems present in industry today
which at a first glance seem to be easily solvable with the
use of robotic manipulators. However, due to limitations
such as maximum payload, maximum reach of the individual
robots, and the single robot work-cell's dynamic
inadaptability, the use of a single robot can prove to be
ineffective in certain work environments. The following
section presents some of these situations and their
possible solutions as derived using the various algorithms

and theories contained in this thesis.

There are many examples of processes which require the
manipulation of 1large, oblong., or heavy objects. Imagine
attempting to pick up a 10 foot, 200 pound bar by one of
the two ends--not an easy task by any means for one robot
to perform due to the tremendous torque produced by the
weight. If the robot had a maximum payload constraint of
150 pounds, then even trying to lift the bar in the center
would prove impossible. This problem 1is easily solved
through the use of two robots, each grasping the bar at an
end. Assuming the bar to be a rigid structure, the moment

at the robot hand disappears and a single robot need only

106

N N I N M N AN A N .

S J.. _,. , ST T

3] r‘-"

FRVIV NS A VRO AT N RYNRE PN AARE AT 5 9ut B 5 0 gt gat gu o dat §p* bt

lift one-half the total weight of the bar. In this
situation, the two robots with maximum payloads of 150
pounds each, now effectively have a 300 pound 1lifting
capability which would be enough to 1lift the 200 pound

shaft.

Also, with a two robot work-cell, one of the robots
can function as a smart vice while the other performs some
sort of operation on the held piece. The advantages of
this type of work-cell are numerous. The smart vice can
attain many more positions and orientations compared to a
vice developed for a specific purpose. Moreover, the smart
vice can easily be adapted for new processes which need to

be implemented.

The uses of multiple robot systems are many. The
problem is to controcl such systems easily and accurately.
Routine 2 (chapter 6) presents and illustrates the
successful implementation of a coordinated position control
scheme. This routine simulates a process where, for
example, a 1long, heavy shaft is to be loaded into a lathe.
The robots are able to pick up the shaft and move it from a
start point (perhaps a stock bin) to an end point (the
lathe) by simply controlling the motion of a coordinate

system located on the bar.

107

P S L 4, G T A, G, S, U i A W £ U L T D QAR LR LGRS L R LR A R R Y

))

ol J

A N

Y
&\

¥
)

.

, -,

g 3

e

- .
.-.ﬂ

PEEL

Pllf-f_.:’.f,"t -

---."—.b-.’.

g

Ll SRR P Sl

e

.

R Ay

-
-
bed

2 VSIS

-
D

Many processes on assembly lines utilize single robots

which have been "taught" a function. Teaching is a process

whereby the robot is 1led through a motion by a human Iy

operator. The operator records joint velocities, through

points, and other function-specific characteristics, and -

the robot cycles repeatedly through the motion to perform

the task at hand (such as an assembly). Using the position

this thesis, the same teaching

control scheme proposed in

y, process can be implemented to teach coordinated robots. 1In

this case, the operator references the mutually held

s

object's coordinate frame to define the motion of the

’ system. If a bar is to be 1loaded into a 1lathe, the

P LT -

operator need only teach the path for the bar to take and

the computer automatically calculates the joint angles and

velocities given the bar path information. Routine 4

illustrates this scenario. The bars path is defined by a

L T TR U I B

start point (a stock bin) and an end point (the lathe).

The computer then takes the bar through this displacement -

with an appropriate change in the roll-pitch-yaw angle for

proper loading into the lathe.

With the algorithms presented in this thesis, not only

physically possible to lift this bar and control its

is it

motion via a teach pendant, but the bar can also be moved

intelligently. This means that the two robots holding the

bar can be moved from a starting 1location and orientation

-

W

. ' “ q.’\'.\‘_'v}:\. '! . — -F~ \"\ N ~ *\ '.*\f\..*).‘-_.'-'-.y\ -‘.!v_-.'.-.'_-._, N v “';t_,‘-,v{ . , *A'.f ' ff" o oy .' n 4

3 98 gt Bad b et g 8y Ry 872 pig'g"

AR By
UG AT

3% 8% 8% 1% 8% 2% A% 12 At “ata nts" R vy 4 R .8 Y . 18" o,

to an end point and orientation through a computer
generated path which accounts for obstacles located in the
work envelope. This scenario 1is futuristic as it
represents a problem of the work-cells of tomorrow. In
this highly dynamic work-cell, the processes can be
extremely complex. Thus, it may become quite ineffective
to teach each individual motion for the robots to perform.
The work-cell must be able to adapt to changing
environments and perform functions given only a set of
parameters. The cell's controlling computer should
intelligently ponder the problem at hand, decide upon
appropriate actions, and implement those actions

accordingly.

The following 1is presented as an example scenario.
The process controller has decided upon the task of this
particular work-cell. This task is to move a long rod from
a centralized stock bin to a cutting machine. The cutting
machine is 1located opposite the stock bin with a pathway
for Automatically Guided Vehicles (AGV's) running between
the two. Thus, the robot's path contains obstacles. The
computer must therefore control the coordinated robots
through the motion and avoid the AGV's as they move along
the pathway. Routine 8 (chapter 6) illustrates this type
of movement. The robots successfully navigate from the

start point (stock bin) to the end point (cutter) with the

109

R R A S S O e e oA g o

AR A (8 L%

L
e e

P4

e
P
/ -

e

'_
'v'i{

1

NP N
»
v

»
[}

l'ﬁ'nll

s I® ¥ B ® o »
LA

CXJE 8, ¢ 5 0 0y
] ‘ff('-'u't’o

:&

A -'- -"PV\

LN AN AT S 'J\;J

avoidance of obstacles 1located 1in the field occurring

dynamically with the motion.

Another situation may arise where the bar to be loaded
into the cutter has been inadvertently placed into the
stock bin backwards. The robot senses this mistake and
tries to correct it by rotating the bar around so it can be
loaded correctly. Unfortunately, this motion is impossible
since the arms of the robots will twist upon themselves to
the point of collision. Routine 6 (chapter 6) illustrates
the detection of this type of problem through a graph node
search scheme and prevents the robots from damaging
themselves. With these algorithms, new motions can be
introduced in the work-cell without any danger of collision
as the computer contains the intelligence to anticipate and

prevent various types of collisions from occurring.

There are many situations where processes are feasible
only as completed using multiple robotic systems. This
section presented some of those processes and the means by
which the concepts presented in this thesis c¢an be

implemented to achieve those processes.

In summary, following are the major contributions of

this thesis' research:

1) The resolved position control theory

presented by Lim and Chyung (13] which was

110

e O S R A o oy D L AV Y G o A A Ry

g b

- (AT T
PSS 5 S

-
o X

22

-

"Y".— ': K- .‘1“ bt

. . _-
«
s 'y
L Ay o

il
ps
-

SRR

%{‘-; .'ﬁl' .I_ '(“fsr\r‘:

A L (@,
A

Ay
XA/

~

implemented on five degree-of-freedom Rhino
robots 1is proven to be valid and effective

for six degree-of freedom PUMA robots.

2) Through contribution 1, the coordinated
robots mutually holding an object are able
to attain any position and orientation

within the object's work envelope.

3) The object's work envelope is defined as
the 1locus of points obtainable by the origin
of the object coordinate frame. The method
by which the work envelope can be derived is

also documented.

4) The Artificial Potential Field Concept
and Configuration Mapping are combined and
altered to provide a <c¢ollision avoidance

algorithm for the coordinated robot scheme.

5) The problem of Twisting Collision is
defined and potential solutions are

presented.

6) The "Striving Technique” 1is introduced
as a combination of collision avoidance and
path planning algorithms. This technique

provides 1intelligence for the coordinated

111

e e G o o T o I A U N A VLA W TS R T R R T R SO S

>

r‘r“

.y o«
?5{"',

1'"1' oL

o
2

:V.
A

. "_'1,“‘,"'.'.."1 2.

T

TS

0
- W

e

o " &
G

oA

A ’\1‘- ‘,:b;,*'.‘ .

.

e OO

J.'.

4, 4

1:.)}

«

.-,,-
O -

/

Batal WA Sl P SRt Al Al A A RIS A YA AP A A I A AN o 0L 0+ h A AN AN I HRes a00 phe el

robots when moving from a start position and
orientation to a final position and

orientation through a field with obstacles.

7) The computer simulation CoordSim 1is
presented to graphically illustrate the
motions and implementations of the various

algorithms.

7.2 Conclusions

This thesis focuses upon the feasibility,
adaptability, and controllability of coordinated robotic
systems. The discussion starts in chapter 2 with a
literature review of the background of coordination of
robots. Chapters 3 and 4 are concerned with a variety of
path planning and collision avoidance algorithms and
methods whereby single robot algorithms can be adapted to
multiple robot systems. Chapter 5 sets up the modeling
techniques and specific algorithms which are represented in
the computer simulation. Finally, chapter 6 reviews the
computer simulation--CoordSim--and discusses the levels of

implementation of this software.

The "Striving Technique" is introduced as a means
whereby a computer simulates an intelligence in order to
move two PUMA robots, simultaneously holding a bar, through

a field having obstacles. The computer is able to direct

112

L »
Y
P
»e

)
5

ELELS

.‘

-3

-
-

L Ll

TN AN

N e ¢

. et
S, W W

« " et et Com T
e

A A AT T R A e AR AT A AT A A e e AT AR e o
2N, AN G A AT A AT A T IO N Iy

SR TN T N N N W W W P2 MR ™ () OO IR

the robots to avoid obstacles of any size or shape and to
move between any two positions and orientations. In
addition, the problem of twisting collision is addressed
and solved through an adaptation of the Graph Node Search
algorithm, Finally, the Coordinated Work Envelope is
defined and a method is proposed to aid in the calculation

of that work envelope.

7.3 Suggestions for Future Work

There are at least three major areas which would
benefit from an extension of results presented in this
thesis. The first would be to implement the various
algorithms on real machines versus simulating their
functions on a computer. The advantages of this are many.
Variables such as inertia, friction, vibration, and timing
would not be ignored and as they are real-life problems,
they could be addressed, tested, and identified. Also, the
use of real machines would unequivocally demonstrate the
application of the proposed position control algorithms and

their implementation towards real-world problems.

Secondly, a type of motion which presents itself as a
complex problem is that of "snaking". This 1is a motion
where the bar must weave 1in between several obstacles
located 1in the field of movement. In other words,

implementation of a simple translation in order to avoid

113

TS - -
RAN NN KN

N

T e A AT e T N e L Pl
. . -

Y

hed o’ e

NN

-

a4 %A

.
SnLuy D

SRR

%

N A AP

RICT g]

.’
U

AR CAARY

Y A BRI

l. ‘.’ »

~
1]
’
r
’
-
.
B3
1
(d
1
-
rr
o

5

]
L ¢
0
N
collision would not be adequate. A rotation would also be oot
(]
- 0] 3 -.
needed. Research into this type of motion would greatly
, e L . b
increase the capabilities of the motion itself due to its i
”
L%
great increase in flexibility. ,Q,
e
Finally, it becomes obvious that recovery algorithms i
.
designed to solve specific problems soon become cumbersome f
L%
as there are many situations which could be presented to a ~
system. While trey may be very effective for specific e,
tasks where there is a limit on the motions possible, they ~
prove invalid for the types of systems where complete (R
independence is desired. Therefore, it is believed that !
LY
the direction for future work should concentrate more on a e
3D
general solution which is job-independent. In this way, tq
any conceivable motion or process could be solved. ION
1‘\
LR
Obviously, this type of general solution is a major hurdle f:
N
I
to be overcome and will require much ingenuity, time, and ﬁ:
effort to arrive at potential solutions. %ﬁ
A’.
&
‘f
hY,
L
::
>
I
N
Y
\.
9.
)
e
)
114 N
f

REAE Y 3 Yo " aJ e e “» y “w PR " e f \ Tyt - i LT Y .
*\R‘\ \’.:., ~ f:.. ‘\'\{:\ g ‘_\)‘\.f\’\ A “,)-"'.::'., *_-. ".) ,\{.’ PN \.}V\-ﬁ.‘.‘\-ﬁ\ ')'.‘f\ e \-.\),w.i;\-’\

)
W

AL

P,

ol

P

0

» i P 1
XA # YA YN

f]
L
-

A-’n’-'.'l'f_"‘, s

AR R

v

YR T RILY BN P A A - -

v
~

(1]

(2]

[3]

(4]

[5]

(6]

(71

[8]

(9l

[10]

(11}

- ‘b. -- . ‘. " - - -, n v l'.“‘ _4 Aa* A,

REFERENCES

Morris, H. "Controlling Multiple Robot Arms",
Control Engineering, (9/86), pp. 144-147.

Skirkhodaie, A., Taban, S., and Soni, A. "AI
Assisted Multi-Arm Robotics", IEEE International
Conference on Robots and Automation, (3/87), v. 3,

pp. 1672-1676.

Maimon, O. and Nof, S. "Analysis of Multi-Robot
Systems", IIE Transactions, (9/86), v. 18, n. 3, pp.

226-234.

Saigo, M. and Sadao, F. "Coordinating a Dual-Arm
Assembly Robot", Robotics Engineering, (11/86), v.

8, n. 11; ppo 8-12.

Hemami, A. "Control and Programming of a Two-Arm
Robot", Technical Paper (Society of Manufacturing
Engineers), (6/85), paper ms 85-600, pp. 2565-2586.

Maimon, O. and Nof, S. "Coordination of Robots
Sharing Assembly Tasks", Transactions of the ASME,

(12/85), v. 107, n. 4, pp. 299-307.

Callan, J. "The Simulation and Programming of
Multiple-Arm Robot Systems”, Robotics Engineering,

(4/86), v. 8, n. 4, pp. 26-29.

Red, W. and Cao, H. "Configuration Maps for Robot
Path Planning in Two Dimensions", Transactions of

the ASME, (12/85), v. 107, n. 4, pp. 292-298.

Kokaji, S. "Collision-Free Control of a Manipulator
with a Controller Composed of Sixty-Four
Microprocessors", IEEE Control Systems Magazine,

(10/86), v. 6, n. 5, pp. 9-14.

Khatib, 0. "Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots", The International

Journal of Robotics Research, (spring/86), v. 5, n.
11 PpP. 90—98.

Nageswara, S., Iyengar, S., Jorgensen, C., and
Weisbin, €. "Robot Navigation in an Unexplored
Terrain", Journal of Robotic Systems, (winter/86),

v. 3, n. 4, pp. 389-407.

115

I._-'%I‘.'i“‘ﬂ“ J'..I,"f~f ,‘)f..f f.'-‘__f~(.¢' f (‘,-PV'.' ~f\f\"~f.'l'~.f '{\;f 4 'J'{I 'f.:?.-

&) {12] Kambhampati, S. and Davis, L. "Multiresolution Path
b Planning for Mobile Robots”, IEEE Journal of
Robotics and Automation, (9/86), v. RA~-2, n. 3, pp-
L4
< 135-145.
53 (13] Lim, J. and Chyung, D. "Resolved Position Control
\j for Two Cooperating Robot Arms", Robotica, (3/87),

v. 5, part 1, pp. 9-15.

[14)] Gilbert, E. and Johnson, D. "Distance Functions and

:f Their Application to Robot Path Planning in the

o Presence of Obstacles", IEEE Journal of Robotics and
o Automation, (3/85), v. RA-1, n. 1, pp. 21-30.

'ﬁ [15] Lumelsky, V. *“Dynamic Path Planning for a Planar

(" Articulated Robot Arm Moving Amidst Unknown

o Obstacles"”, Automatica, (2/87), v. 23, n. 5, pp.

™ 551-570.

[

= (16] Zapata, R., Fournier, A., and Dauchez, P. "True

e Cooperation of Robots in Multi-Arms Tasks", IEEE

jr International Conference of Robotics and Automation,
- (3/87), v. 3, pp. 1255-1260.

o

=) [17] Craig, J. "Introduction to Robotics, Mechanics, and
~ Control", Addison-Wesley Publishing Company, Inc,

N (1986), p. 41.

J;? [18] Chimes, P. "“"Multiple-Arm Robot Control Systems",

" Robotics Age, (10/85), pp. 5-10.

) [19] Hawker, R., Nagel, R., Roberts, R., and Odrey, N.

f "Multiple Robotic Manipulators", Byte, (1/86), pp.
Ng 203-219.

fl

‘fl - » - -

Wy [20] Lee, C. "Robot Arm Kinematics”, in Tutorial on

x Robotics: IEEE Computer Society Press, (1/83)., pp.

"

< 45-72.
-:: [21] Grossman, D., Evans, R., and Summers, P. "The Value
}i of Multiple Independent Robot Arms", Robotics and

j Computer~Integrated Manufacturing, (8/85), v. 2, n.
... 2, pp. 135-142.

;: [22] Lee, B. and Lee, C. "Collision-Free Motion Planning
o of Two Robots", IEEE Transactions on Systems, Man,
o and Cybernetics, (2/87), v. smc-17, n. 1, pp. 21-32.
5

s
P <"
N
N
N

116

,;.’-l

)
Ry N R G S R B N A S R R U U AT

[23] Acker, F. and Ince, I. "Troikabot--A Multi-Armed
Assembly Robot", Tecnical Paper (Society of
Manufacturing Engineers), (6/85), paper ms85-589,

pp. 2357-2376.

(24] Maimon, O. "A Generic Multirobot Control
Experimental System", Journal of Robotic Systems,

(winter/86), v. 3, n. 4, pp. 451-4¢66.

[25] Mayer, G. and Wood, E. "Multiple-Arm Control and
Assembly Operation”, Robotics Engineering, (4/86),

v. 8, n. 4, pp. 18-25.

[26] Wong, E. and Fu, K. "A Hierarchical Orthogonal
Space Approach to Three-Dimensional Path Planning"”
IEEE Journal of Robotics and Automation, (3/86), v.

RA-2' It. 1, PP. 42—53-

-~

S{“”l. 'f .f

7’

'

by a3

‘:". 5

5 R

sAy

A e
.' -

L I N N N R AT TR IR T S L S U e o S ST R S s S
. -

A A A e N AN AN A T AN, e N A,

AR

)
SN

APPENDIX 1

i
LY

PROGRAM LISTING

SN

4

< vy . l, e]
ARARNHIY **)

v _’
R LPLLEL

it 4
lll ‘.“v
« ‘n

e

P e b
R -- -}"'._-

A 4
Ay
- J‘J'}-’ KRN

[
»

S5

118

ALY

AN

x4

T

W N Y . b A et e . v ettt s a - -
1’\’7 -’) J"‘ \Q’J.'\.,"'},A“.h"; S\ '_.._. -‘.;:.,_ N BEREICIT I S NN g™ S R AU A AR TL R IR

A A lalal a2 -

Program CoordSim;

{ This program is a simulation of coordinated PUMA

ﬁ' robot arms |}
ol
N
3. {$C-} | allows for keypressed function)
:'j ltt*tttttttttt***tt***ttt*tt}
N { include TurboPascal graphics functions |
x procedure Graphics;
»E external 'GRAPH.BIN';
e procedure HiRes;
external Graphics[6];
e procedure HiResColor(Color: Integer);
m external Graphics([9];
{ procedure Palette(N: Integer);
2 external Graphics[12]);
e procedure GraphBackground{(Color: Integer);

external Graphics([15];

P procedure GraphWindow(X1l,Y1,X2,Y2: Integer);
e external Graphics[18];
’E procedure Plot(X,Y,Color: Integer);

. external Graphics[21];

< procedure Draw(X1l,Y1l,X2,Y2,Color: Integer);

¥ external Graphics([24);

* o procedure Circle(X,Y,Radius,Color: Integer);

~ external Graphics([33];

'3 procedure FillShape(x,y,fillcol,bordercol: integer);
» external Graphics[48];

- procedure ClearScreen;

external Graphics[60];

[}

:: [**********tt*tt*i*t**t**tk*l

%

? label
W FLAG1l, FLAG2, FLAG3, FLAG4, FLAGS, FLAG6, FLAG7, FLAGS;
A type |{ identify types of matricies |

o matrix2x4x4 = array (1..2,1..4,1..4] of real;

ﬁ- vector2x6 = array [l1..2,1..6) of real:
,E vector2x3 = array [1..2,1..3] of real;
'Y vector3d = array [l..3] of real;

' vector2 = array [1..2] of real;
e matrix3x3 = array [1..3,1..3]) of real;

NG matrixéx3 = array [1..6,1..3) of real;

b? matrix2xl16x3 = array [1..2,1..16,(x,y,2)] of real;
:ﬁ matrixdx4 = array {1..4.,1..4] of real;
P

var { define variables |}

119

at lab Ya® Bu® $ab (2 et vi: ae oy T9 ath ¥ 2" 0,0V @ g $8 .4 ad s b val val v - oo tRioBT. &'z d%e AV e fin R Y g S Sat lat fas b e’ Sat Bat g

is del_rpy, { change in rpy angle |
oty rpy. { rpy angles |
del { change in position |
i : vector3;
™~ del_theta [change in theta }
Q : array [1..6] of real;
~ trans, { transformation matrix from robot
DN base to hand)
Trb, trans from reference to base |

{
R Tinvrb, { inverse trans from ref to base }
; NexTrans, { Next location's trans |
- Transinit, { initial trans from base to hand |
A Tro, { trans from ref to object |
B TroEND, { final trans from reference
to object }
K\A Tinvinitro, { inv, initial trans from ref
W, to object |
o T2, { intermediate, dummy trans |
Tincr, { a dummy var for drawbox |
! RotTrol { rotation matrix of Tro]
: matrix2x4x4;
RotTro { rotation matrix of Tro |
‘$ matrix3dx3;
) theta { joint angle vector |
d thetaTRO, f thetas which generate Tro |
:E thetaNEW { new joint angle vector |
- : vector2xé6;
v coord { node coords matrix |
o : matrix2x16x3;
h} chars { shoulder, arm and wrist char.'s |
e : vector2x3;
e i,j.k,1,m,n, { counters |
_ numsteps, { number of steps between start
o and finish }
e RobotID { identifies between robots |
1 : integer;
N movementx, { change in x motion |
i movementy, [change in y motion)
. movementz, { change in z motion |
E. PX,PY.pPZ { position coordinates |
o : real;
) inkey { key read from keyboard input |
}: : char;
e grip, { tells if robot has grip on object |
, collision [toggle for graph node search exec. |}
o : boolean;
"
::f {*********************t**t**i}
7
- FUNCTION Atan2 (num, den : real) : real; begin
g 120
b
A
| i}
P
K‘I\- SN L] I_._f"f .f_‘f\.“ .-_ .-\-‘.r Tat {I_‘l‘;f;f\:l“; \ SR _;-' " \.r\' N ,;. ,_qr AN

T _J“'.\ :-.-

|

if (num

{
else if

else if

{
else if
atanz2

{
else if

atan2

{
else if
atan2

{
else if
atan2

{
else if
atan2

{
else if
atan2

r!ﬂmEﬂFDﬂ7Eﬁ!ﬂHRDﬂF1ﬂUIﬂUIﬂUIMFEﬂUﬂﬂ!!HmUﬂ!‘ﬂHUﬂHUﬂHvﬂFEWFPvat“?T"HtﬂvaﬂviﬁvWﬂvwrv5

This program inputs the numerator and
demomenator of an inv. tan function and
returns the atan2 function. |

= 0.0000) and (den = 0.0000) then

write('zeros in atan” function')

Y-axis |
(den = 0.0) and (num > 0.0) then atan2 := pi/2

i

-pi/2

(den 0.0) and (num < 0.0) then atan2

Vector close to pos x-axis. Adjust 0.0001 to
vector length |
(num < 0.0001) and (num > -0.0001) and
(den »>= ~1.0) then
:= 0.0

Vector close to neg x-axis |

(num < 0.0001) and (num > -0.0001) and
(den ¢ -1.0) then

1= pi

first quad |
(num > 0.0) and (den > 0.0) then
:= arctan(num/den)

second quad |
{num > 0.0) and (den ¢ 0.0) then
:= pi - arctan(abs{(num/den))

fourth quad |
(num < 0.0) and (den > 0.0) then
:= arctan{(num/den)

third quad |
{num ¢ 0.0) and (den < 0.0) then
:= -pi + arctan(num/den)

else write('** error in atan2 function **');
end; | routine |

lt*ﬁttitt***t**tt********t**tl

FUNCTION Pow(x, y : real) : real ; begin

{ This function returns a number to a power |

if (x >

0.0) then

pow := expl(y*1ln(abs{x)))

.- . - -."*\,"."- -*\\J‘-v\‘;‘}\{'\ % Y '\'.-. o] \J.\'p.f-’\".\ "J‘,‘f WAL AT -
. 3 - - . g ol £l - - . " .

121

'*‘ -"-‘. L -' TS 1‘.:..-.. .’ .).‘1.-1.‘3 WA ...- :

~
)
o)

%%

oy

LA AR RBRRN

[else if (x = 0.0) then
" pow := 0.0
else if (frac(abs(y)) = 0.0) then begin
1 4 if (odd(abs(round(y)))}) then
y pow := -exp(y*ln{abs(x)))

o else
¢ pow := expl{y*ln(absi(x))):
[}
Y end { else |
else
A write{('bad numbers in pow routine');
o end; { function }
».\
:‘: {iti‘ki**iﬁiﬁtttti*ttﬁ*iﬁtt***I

PROCEDURE Envelope;

4.~
N { This routine calulates the work envelope and
N draws it |
W
N var
X, Y : integer;
;f begin { routine |
= for vy := 0 to 300 do begin
o X := round (400-sqrt(sqr(250.0)-sqr(y-137.7}));
o Plot (x, round (153-0.4*y),1);
& X := round (200+sqrt(sqr(250.0)-sgr(y-137.0)}));
A Plot {x, round (153-0.4*y),1);
:ﬁ end; [for y |
2
N for x := 215 to 385 do begin
oy y := round(137.0+sqrt{sqr(183.0)-sqr(x-300.0)));
Plot(x, round(153-(0.4*y)).,1);
e end; | for y |
o end; { routine |
o".
’>.‘ {tti*!*t**ttttttit**itkktt***l
V PROCEDURE Coordinate (var coord : matrix2xlé6x3;
?} trans : matrix2x4x4;
. theta : vector2xé6);
N
'f { This routine calculates the intermediate
NS coordinates of the nodes |
:? const
; scale = 0.20; | scale factor between true robot
o values in mm and screen scale |}
0 scale2 = 25.0; { scale factor between rotation
) vectors and hand size |
valt]
Lo 122

B o A L L AR A A S S 2 b e S e e ot

" ' . RN 'y) ' oW T 'd o x s, t e U y
W
4
()
)
-~
o
var i : o~
integer;)
begin | routine ! ‘,
]
coord [1]({1]([x] := 200.0; [robot base coordinates } %
coord [1]1([1])([y] := 0.0;
coord (1] (1]([z] := 5.0; 5
coord [2]({1]([x] := 400.0; _‘i
coord [2][1])[y] := 0.0; N
coord [2]([1]([z] := 5.0; ?h
»
for i := 1 to 2 do begin E:
coord [i]}[2][x] := coord [i][1])[x]:
coord [i][2](y] := coord [i][1][y]): .
coord [1][2)([z] := (scale*660.4) + coord ([il(1l]I[z]: s
o
coord [i](31(x] := coord [il[2][x] - k}
sin (theta [i][1])*
scale*200.0; E'
coord [i][3]1(y] := coord [i]({2][y] + by
cos (theta [i][1])*scale*200; ;;
coord (i](3](z] := coord [i]l([2]([z2]: j:‘
l.‘
coord [i][4])[x] := coord [i]JI[3]I[x] + f\;
cos (theta [i])[1l])=* z
cos (theta [i][2])*scale*431.8; v
coord (i]([4]([y] := coord (il(3][y] - o
sin (theta [i][1])* b
cos (theta [i][2])*scale*431.8; }:
coord [i][4}({z] := coord ([i][3]([z] - >:$
sin (theta [i][2])*scale*431.8; é
&
coord [i]([5]([x] := coord [i][4][x] + scale*50.91* o
sin (theta [i][1]}):; o
coord [i])[5])[y) := coord [i]([4][y] - -
cos (theta [i)[1])*scale*x50.91; e
coord [i]([5)([z] := coord [i]l[4][z]: s
coord [i][6][x] := i*200 + trans [i)[1)[4); A
coord [i]1[6][y] := tramns [i][2)(4]; t*
coord [i]le]([z] := 5 + scale*660.4 + -
trans [i][3])[4]); t
coord (1] [7]1[x] := coord [i]}[6][x] + »
scale2*trans([i] (1] [2]; o
coord [i] [7]([y] := coord [i][6][yl + o
scale2*trans[i] [2](2]; oo
coord (i][71(2] := coord [il([6](z] + N

scale2*trans[i] [3][2);

123

T » O YR TR O s oy Pa% 282" 0a® 0a® a®, 0% 0t 60" Aad bt 00t 1% Bt dat Ny S0t ha* o he® Sar® 0n’. et et fu’ natoges et Set i " AR LT e GaC A bt

.3
‘.'l
W
2
‘\
- coord [i]([8]([x] := coord (il (7] {x] +
scale2*trans[i] [1][3];
. coord [i][8])[y] := coord [i)[7])[y] +
% scale2*trans[i] [2][3];
N coord [i][8](z] := coord ([i](7](z] +
N scale2*trans[i] [3][3);
P~
' coord [1i]1({9](x] := coord (il([6]1(x] -
oy scale2*trans{i] (1] (2];
R coord [1i]1[9][y]) := coord [i}[6][y] -
e scale2*trans([i] [2][2];
N coord [i]1[9]([z] := coord [i][6](z] -
e scale2*trans(i] [3][2];
" coord [1i][10]([x] := coord [i][9][x] +
ﬁ. scale2*trans{i] [1] (3];
N coord [i]([10]([y] := coord [il1([9]1[y] +
& scale2*trans{i} [2]([3];
. coord [i][10]([z] := coord [i][9]([z] +
§ scale2*trans[i] (31 ([3]:
1} end; [i}
;$ end; { routine }
'Q: {t***t********t**t*****tt****l
T
o PROCEDURE Node (var collision : boolean;
:4 coord : matrix2x16x3);
A
;? { This routine performs the graph node search |
R M
‘ var
o dist : real;
j: i,j3.,k : integer;
N
T begin
fu.
. collision := false; { default value |
\d
:: { calc intermediate nodes for accuracy in node
- search |}
e for k := 1 to 2 do begin
S for j := 1 to 2 do begin { node 11 and 12 i
. coord [k][10+3]([x] := (coord [k][2]([x] -
N coord [k][1][x])=*
o j/3.0 + coord (k] [1](x];
s coord [k][10+3j]1([y] := (coord ([k]([2][y] -
Ny coord [k][1)[y))*
~ 3j/3.0 + coord (k1[11(y]):;
B coord [k]1[10+3j][z] := (coord [k][2])[z] -
>
" 124
o
N
':\'
.'c“'\'.f_‘l__o‘, SR A

P A

%

-, coord [kl([1]1[z])=*

o j/3.0 + coord [k)I[1])([z):
' end; [for j |

n for j := 1 to 2 do begin { nodes 13 and 14 |

S coord [k]([12+3]Ix] := (coord [k][4]([x) -

A coord [k]I[3][x])*3/'.0 +

H coord [k)([3])([x]:

i coord [k](12+3j]1(y] := (coord [k](4][y]l -

* coord [k]I[3])[yl)*j/3.0 +

e coord [k][3][y]}:

N coord [k][12+3j]([2] := (coord [k][4][z] -

Y coord [k][31[z])*j/3.0 +

& coord [k](31(z];

dy end; { for j |

for j := 1 to 2 do begin { nodes 15 and 16 |

o coord [k][14+j)([x]) := (coord [k][6][x] -

R coord [k][5]1[x])*3/3.0 +
coord ([k](5](x];

(coord [k]lI[6]1ly]l -

coord ([k1I[S])(yl)*j/3.0 +
* coord [k][5]([y]l;

coord (k]l([14+j]1([z] (coord [k]l(6]l(z] -

coord [k]{14+j](y]

I L

- coord [k][5][z))*3/3.0 +
i coord [k](51(z];
3 end; { for j | :
- end; { for k |
<
{ do graph node search |
o gotoxy (2,2); write ('GRAPH NODE SEARCH'):
) for k := 1 to 16 do begin
. for j := 1 to 16 do begin
b dist := sqrt (sqr (coord (1] (k] (x] -
coord [2][3])Ix]) +
-, sqr (coord [1]([k](y] -
- coord [2][3j]1([y]) +
> sqr (coord [1]([kl(z] -
o coord [2][3][z]));
.J
d { range for collision |
- if (dist <= 35.0) then begin
» gotoxy (2,2);
- write ('NODE COLLISION WILL OCCUR');
(- collision := true;
o exit; [return to main |
end; (if |
1y end; { for j |
{; end; | for k |}
o
_:j { delete words above |
. gotoxy (2,2); write (' ")
e 125
N
v
o

e o

L
v

e " AT e ta T A AT S N A Yt AT T R T L A e .
O O O A A N A N A N A A N M A N AT

{ routine |}

end;

{*ttt*t**tt*t****t****t***ttﬁ}

matrix3x3 ;
vector3):

(var rot
rpy

PROCEDURE CalcRot

{ This routine calculates the rot mx given the rpy
angles |

rot [1]1[1] cos(rpy [3])*cos(rpy [2]);

J)J}'!

rot [1](2] cos(rpy [3])*sin(rpy [2])* '
sin(rpy [1]) - sin(rpy (3])*
cos(rpy [1]1);

rot [11([3] := cos{rpy [3])*sin{rpy [2])* 8

P cos(rpy [1]) + sin(rpy ([3])*
sin(rpy [1]1);

[211[1] sin(rpy [3])*cos(rpy [2]):)

rot [2]1[2] sin(rpy [3])*sin(rpy [2])*
sin(rpy [1]) + cos(rpy [3])*
cos{rpy [1]):

rot {2]1(3] := sin(rpy [3])*sin(rpy [2])*

cos(rpy [1]) - cos(rpy [3])*
sin(rpy [11);

W 22

- rot [3][1]
N rot [31(2]
rot [3]([3]

-sin(rpy [(21):
cos(rpy [2])*sin(rpy [11);: .
cos{rpy [2])*cos(rpy [1}); !

end; {routinel

{*tt**********t****tt**t*****‘

"~ -
el -
e PROCEDURE CalcTran (var trans : matrix2x4x4; 0
N theta : vector2xé6); !
.)
! { This routine calculates the trans matricies
N given the joint angles]
" n
: const \
: scale = 0.20;
\
] var

i

i : integer;

begin
for i := 1 to 2 do begin

trans (il [1}([{4] := cos (theta [i][1]))*(scale*

126

v

-------------- AT e T S N e At A A R P - - .
f’~ TN f'f'f\ \I\f AT O A A AT AT ‘\}\ =

- -..';.._;_. AT AP P <_—_:,'-_.‘;_>‘:_,._:_ W NI : - —,‘;_n;‘.\:_r\;‘-';‘.{_.;.,\z. e “’-:'.-;'.' RN ’ Y) .‘_\.’u.‘.\.’\'_n‘_:""\
- T . & A ; : B .

.

431.8*cos (theta {i][2]) -
scale*20.32*cos

(theta [i][2] +

theta [i][3]) -
scale*433.07*sin (

theta [i])[2] +

theta [i][3])) -
scale*149.09*sin (

theta [i][1]1):
sin (theta [i][l])*(scale*x431.8%*
cos (theta [i][2]) -
scale*20.32*cos (theta (i] (2] +
theta [i][3]) -
scale*433.07*sin (

theta [i]l[2] +

theta [i]1[3]1)) +
scale*x149.09*cos {

theta [1]1([1]):
scale*20.32*sin (theta [i][2] +
theta [1][3]) -
scale*x431.8*sin (

theta [i]([2]) -

scale*433.07*

cos (theta [i][2] +

theta [i1][3]):

Tosasays

fatatyBTE
I’l'-'l"l .

",

trans [i])[2][4]

trans [1][3][4]

.5 lr\._ Lt T o Jo g~ Mgl SIS AL R

v S A

»e

trans [1)(1]I1]

cos (thetaf(i][1])*
(cos (theta(i][2] +
theta(i] (3]} *(cos
(thetal[i]l [4])*
cos (thetaf[i][5])*
cos (thetafil[6]) -
sin (theta(i][4])*
sin (theta(i]l[6])) -
sin (thetalil([2] +
theta{i] [3])*sin (theta{i] [5])*
cos (thetaflil[6])) +
sin (thetal[il[1])*
(sin (thetaf[i][4])+*
cos f{thetafi] [5])*
cos (thetal[il [6]) +
cos {(theta[i][4])*
sin (thetali]l[61)):
trans [1]([2])[1] := sin {(theta[i][1])*
(cos (thetal[i][2] +
theta[i](3])*(cos({theta[i] [4])*
cos (thetal[i] [5]))*
cos (thetaf[il([6]) -~
sin (theta(i]l(4])*
sin {(thetal[i] [6])) -
sin (theta([i][2] +

\"’t?’
&

W RANS

r—

B AR

o5

<

-

- o
PRI

-
-

!

vy e e

127

Py X7 AN Dl

‘\‘-;-

el
[

\

..... o

-

o

AR

r

»

R,

£

thetali] [3])*
sin (theta[i] [5))
cos (theta([i][6])
\ cos (theta(i]([1])
y (sin (theta([i] [4]
)
)
)
)

®x
)
x
)*
- cos (theta(i] [5])*
~ cos (theta(i] (6]
b cos (theta(i] (4]

sin (thetal[i] [6]
trans [1i][3][1] := -sin (theta[i][2]

thetal[i] [3])*

(cos (theta[i] [(4])*

cos (theta{i] [5])*

cos (thetali)[6]) -

sin (thetaf[i] [4])*

sin (theta([il([6]1)) -

cos (theta(il([2] +
f theta[i][3])*sin (theta[i][5])*

cos (theta[i]l[6]):;

+

*
)
+

trans [1]1[1]1[2] := cos (thetali]([1])*
(~cos (thetal[i] [2] +

theta[i1] [3])*
4 (cos (thetalil [4])
i cos {(theta[i] [5])*
:)
)

*x

sin (thetaf{i][6]) +
sin (thetalil (4]
cos (theta[i]l([6])) +

- sin (thetali][2] +

N theta{i] [3])*

N sin (thetal[i]) [5])*

5 sin (thetafi]l[6])) +

’ sin (theta[i][1])*

>, (-sin (theta[i] {4])*

. cos (thetal[i]l([5])*
sin (theta(i]([6]) +
cos (thetal[i][4])*
cos (thetafil(e6])):

trans (i]([2][2] := sin (thetal[i][1})*

‘ {-cos (thetaf[i] [2] +

} theta[i] [3])*

{cos (thetal[i] [4])*

cos {(theta[i]l[5])*

sin (thetaf[i]l([e6)) +

sin (theta([i] [4])*

cos (theta(il[e])) +

sin (theta(i] [2] +

thetal[i] [3])*

sin (thetal[i] [5])*

sin (theta([i][6])) - 3

cos (theta[i]l([1])*

x

e e T T N I

RN PR A g 4

%’l 'VI

128

R R e g e 0 XY o et L A T A R]

LA Ay

.-y

a_m s & _a2_«
Sl LA

Y Sy W v e

o S 8

g AN

trans

trans

trans

trans

trans
trans
trans
trans

end { 1

(i1{3)(2]

(1101](3]

(11021 [3]

(1103103]

(1] (4] [1]
(i1 [4) (2]
(i1 (4] (3]
(i1 (41 (4]

!

HPOOO
[eNeoNeoNo]

(-sin (theta[i] [4])*
cos (thetaf{i] [5])*
sin (thetal[i] [6]) +
cos (theta[i] [4])*

cos (thetal[i][6])):
sin (theta{i) [2] + theta[i] [3])=»
(cos (theta[i] [4])*
cos (thetal[i] [5])*
sin(thetalil [6]) +
sin (thetaf{il[4])*
cos (theta[i][6])) +
cos (theta[i][2] +
theta[i] [3])*
sin(theta{i] [5])*
sin (thetal[i}[6]);

-cos (thetai](1])~*
{cos {(thetafi][2] +
theta[i] [3])*
cos (theta([i][4])*
sin (theta(il([5]) +
sin (theta[i] [2] +
theta[i] [3]1)*
cos (thetal[i] [5®])) -
sin (theta[i] [1])=*
sin (theta([i] [4])*
sin (thetal[i] [(5]);

-sin (theta[i][1])*
{cos (thetalil[2] +
theta[i] [3])*
cos (thetaf[i][4])*
sin (theta[i][B]) +
sin (theta[i] [2) +
theta[i] [3])*
cos (thetal[i][5]1)) +
cos (theta(i] [1])*
sin (theta[i] (4])*
sin (thetal[i][5]);

sin (theta[i] [2] +
theta[i] [3]))*cos (theta[i] [4])*
sin {(thetal[i]) [5]) -
cos (thetali][2] +
theta[i] [3])*
cos (theta[i] [5));

~e we wo we

129

-'.q?’

AR

: DX X AR o XA A

AP

RPN

ﬁ.
’

. {pvv‘.{ '.'_-

>
x

O

L)

fo'."4- l' "'
s O»

-'-A-,-,"., ‘l'

L
)

Y

[y

-

oY) ara 2% A . e e . y
fa"yta'1t (i O R T W W W M O O WU C W T 9 J e 0 08 Sak

Rant R

2
end; { routine |} .
.
[ttttttttt*t*t**tt*t*ttt*****l f
|
PROCEDURE Step (var numsteps : integer; .
start,finish : matrix2x4x4);
N
{ This routine determines a uniform number of <
steps to take from a starting position to a =
final position |
'
var t
dist : real; |{ distance between start and finish | >
i : integer; [counter |} j
begin .
: dist := 0.0; {initialize } ’
| for i := 1 to 3 do { calculate distance | :
\ dist := dist + sqr (start [1][i](4] - d
s finish (1][il(4]1): e,
] dist := sqrt (dist); ¢
[
numsteps := round (dist / 10.0); “
[where 10.0 is a predefined distance per step | Q'
4
if (numsteps = 0) then { case of pure rotation | -3
numsteps := 5; o,
end; { routine | -3
{*****t*****t*t*************t, ::
‘r
PROCEDURE InvKin (var theta : vector2x6: 2
trans : matrix2x4x4;
! chars : vector2x3); ‘
{ This routine inputs the transformation matrix :
and the char matrix to return the joint <
angles | I
var t
. interl, inter2, -
inter3, inter4 : real; { intermediate answers } N
. param : array [1..4,1..4] of real; { robot params | i

begin | procedure InvKin |

param [3]([3] := 149.09%0.2; | set four parameters | ;
3 param [3][2] := 431.8x*0.2; { times the scale factor | A
| param [4]{2] := -20.32%0.2; e

param [4][3] := 433.07*0.2; »
. 130

PR APAAL

~
S
.
u
LA o

\\‘.‘--\.- A

'il'J"f‘J"-'l-l'f- O, SN AN -.'q‘.-z. \".‘.)-r\-r.-r-f‘.‘f\-\fw.\..\\\-

‘-‘-\‘.\‘\"\\\" "v\

L

'..-f‘“(-‘\'- ;.‘. \-f\.‘\.::--‘-\ .

o % Y

:'-
I*

.-f‘

for i := 1 to 2 do begin o

theta [i][1] := atan2 (trans [i][2][4], a

trans [1][1]([4]) -

atan2 (param [3][3], g

chars [i)[1]* ht

sqrt (sqr (trans [i][1][4)) + -

sqr {(trans (i} (2](4]) - -

sqr (param [3][3]))): AL

interl := (sqr (trans [i][1](4]) + n

! sqr (trans [i][2][4]) + p
: sqr (trans [i][3]1([4]) - -
[sqr (param [3]([2]1) - -
{ sqr (param [41([2]) - ;‘
sqr (param [3]([3]) - '

sqr (param (4])(31)) / by,

R (2.0* param [3][2]); /P
theta [i][3]) := atan2 (param [4][2], N
param [4]([3]) - a(

atan2 (interl,)
chars [1i][2]* oY

sqrt {(sqr (param [4][2]) + o
sqr (param [4]([3]) -)

\ sqr (interl))); N
inter2 := atan2 (trans {[i}([3]([4]* (-param [4][2] - E
param [3][2]* -3

cos (theta [i][31)) - »

) (cos (theta [i][1])* b
\ trans [i]([1]1(4] + .
! sin (theta [i][1]})* o

trans [i][2](4])*

(param [4]({3] - param [3])([2]*
sin (theta ([i][31)),
trans [i]1(3])[4]* (param ([3]([2]*
sin (theta [i]1([3])-

param [4]1[3]) + (param [4]([2] +
param [3]([2]*

cos (theta [i]([3]1))*

(cos (theta (il [1])~*

trans ([1]1[1](4]) +

ST NS AT

A, Ty
PN

sin (theta [i][1])* >

trans ([i]([2]{41)); ~

theta [i][2] := inter2 - theta [i][3]; E‘

; inter3 := -trans [i]({1](3)* sin (theta [i][1]) + N
. trans [i]1([2](3]1* cos (theta [i][1]); gf
interd4d := -trans [i][1]([3]1* cos (theta [i][1])* ?‘

: 131 E
| -s
3

) s e et ettt e X

.....

LN Lt o AT AT T

cos (theta [i][2] +

theta [1]([3]) - trans (i](2]([3]*

sin (theta [i][1])=*

cos (theta [i][2] + theta [i][3]) +
trans [1](3])([3]* sin (theta ([i}([2] +
theta [i](3]):

if (abs (inter3) < 0.001) and
(abs (inter4) < 0.001) then
theta [i}l1([(5] := 0.0 { Case of singularity
of theta 5. Assume
theta [4] equals its
old value |}
else begin
theta [i]1[4] := atan2 (inter3, interd):
theta [i][5] := atan2 (trans [i][3])[3]}*

sin (theta [i]([2]) +
theta [i](3])*
cos (theta (i] ([4])-
trans [11[211[3]*
{cos (theta [i][1])=*
cos (theta [i][2] +
theta [1][3])*
cos (theta ([i]([4]) +
sin (theta [i][1])*
sin (theta [1][41)) -
trans [i][2][3]1*
(sin (theta [i]([1])*
cos (theta [i]([2] +
theta [1][3])*
cos (theta [i][4]) -
cos (theta [i][1])*
sin (theta ([i]([41)},
~trans [i][1]1[3)*
cos (theta [1i][1])=*
sin(theta [1][2] +
theta [i]([3]) -
trans [i][2]1([3]*
sin (theta [i][1])*
sin (theta {i]([2] +
theta [1][3]) -
trans [(i]([3](3]*
cos {(theta [i][2] +
theta [1]1([3]));
end; { else if |
(-trans [il[1][1]*
{theta [1i][1])*
(theta [i]}[2] + theta [i][3])*
(theta [1][4]) -

atanz
(cos
cos
sin

theta [i][6] :=

132

T e AT e A A ﬂ':’._‘ o \- .

.....

: q n Cate ate® y . e b A PRy
CaNSI R R le sttt i iny b U A e VLW NN B AL ARG KGR LA AL AL AL A AR PN Ad d Al RSl Al gl "ate

= sin (theta [i][1])* ﬁ
i cos (theta [i]([41)) - ;
trans [1][2]([1]1* g
(sin (theta [i][1])*)
cos (theta [i][2] + ry
theta [i][3])* sin (&
theta (i](4]) + g™
cos (theta [i][1])* ph
cos (theta [i][4])) + 4
trans [i][3]([1]=* s,
sin (theta [i][2] + ’
theta [i][3])* sin (theta ([i][4]), ;
trans {i] (1] (1]1* 7,
{(cos (theta [i][1])* Ff
cos (theta [1i][2] + theta [i][3])*
cos (theta ([i]([4]) + -
sin (theta [i][1])* Y
sin (theta [i]([4])}* "o
cos (theta [i][5]) - A
cos (theta [i][1]))* ;*
sin (theta [i][2] + ,
theta [i]([3])+*
sin (theta [1i][5]1)) + «
trans [i][2]([1]* A
s (cos (theta [i][5])* !
Y {sin (theta [i][1])* ‘N
: cos (theta [i]([2] + &
theta (1] (3])* cos -
4 theta ([i](4])) - I
! cos (theta [i]([1])~* N
' sin (theta [i])[4]))) - A
: sin (theta [i])[1])* N
: sin (theta [1]([2] + ‘
theta [i][3])* ™
sin (theta [(i]([5])) - R
trans [i] (3] [1)*(sin { %
theta [i][2]+ o
theta [i][3])* cos (theta [i][4])* >3
cos (theta [i][5]) + >
cos (theta [i][2] +theta (i](3])=* o
sin (theta [i][51))); ::
\ if (chars [i][3] = -1) then begin | flip wrist ~
characteristic | *
theta [i][4] := theta ([i]([4] + pi: ~
theta [i]([5] := -theta ([i][51: ;-
theta [i][6]) := theta [i][6] + pi: -
. end; { if } -
end; { for i 1| .
end; { routine | '
133 :}
',u
»
A-."\-".'.”-."." ''''' " -l -

- - - .y - .~ - .- - - el - - L e = - . - oo - - - -
v"f'f.\-"‘l'\'f-' i '.-,-'-' AN A /.-f..-':.".'f e 'J'"-'.-’.-v'.--'_'-’\Iw-‘*-’\-f\-’\-f\-f.\'i"')"'f 'ul'\-l'\ ‘f‘f‘}‘ \-’\ \:"" A
. o - . Bl A »

[****t*ti***ttt*t****t**t‘k**t}

PROCEDURE Border (UpperLeftX, UpperLeftY, LowerRightX,
LowerRightY,DivisionY, DivisionX :
integer) ; begin

{ This procedure draws the border of the screen |

LowerRightX, UpperLeftYy, 1);
draw (LowerRightX, UpperLefty,
LowerRightX, LowerRighty, 1);
draw (LowerRightX, LowerRighty,
UpperLeftX, LowerRightyY, 1):
draw (UpperLeftX, LowerRighty,
UpperLeftX, UpperLeftY, 1);
draw (UpperlLeftX, Divisiony,
LowerRightX, DivisionY, 1);
draw (DivisionX, UpperlLefty,
DivisionX, DivisionYy, 1):

|
|
i draw (UpperleftX, UpperLefty,
i

e,
N

N,

l,‘l

."‘h

end; | routine | NN
-

ﬁ.,'\-

(*t*tﬁ************t******k***l ::$~
¥

PROCEDURE DrawIquad (x1, yl, x2, y2 : real); 2
{ This procedure converts coords in quad I to i

screen coords for printing) -~

-
begin »
draw (round(xl), round(153 - (0.4*yl)), _:

round(x2), round(153 - (0.4*y2)), 1); N

end; { routine |} ?ﬂ

l\'l.

{*k*t**t*****t***t***********] ":.-\.::

PROCEDURE CircleIquad (x, y : real ; radius, color F%}
integer); bAYN

G

{ This routine draws a circle in screen coords .\:
given quad I coords |} fa

begin .9
circle (round (x), round (153 - (0.4*y)), -

radius, color):; N

end; [routine | RARRN

<us

r

[itt****k**t*t*t********t*t**}

55
<
ﬁiﬂ.
A _R_.

v

134

_:". "'-"f.’]
e

r]
i
’A/ !

S T T S R A L AT S o e e) ' .
R \J'._-’\-’nh-"-_‘ JURJEN DS W '\J‘ "’\', -.:-'.-., e J.'.\,", ..\...- s, ..‘;{_,\. \{\f\.. N

e A T T N e e R "o i

A A A YA M - R

{otarer,

1‘1 x -.;Lt’) .;

RO &

.)
H l* .~ lﬁ

NOY R
WS e,

A A A

) {:;:_ gy
Fan

}

NS

»

)
ale s

s
‘e

- y
o P

Py

T -

PROCEDURE Drawframe (trans : matrix2x4x4; Theta :
vector2x6; coord : matrix2x16x3);

{ This routine draws the robot framework given the
vector of thetas and the chars. It updates the
trans matrix.|

var
i,j : integer;
dist : real:

begin { drawframe | { The variable coord [][][] is in
SCREEN COORDS |

for i := 1 to 2 do begin
{ output WRIST coords to screen |

GotoXY ((60 + (i-1)*9),22) ;
write (coord {[il([6])[x]) : 7 : 2) ;
GotoXY ((60 + (i-1)*9),23) ;
write {(coord [i]([6])I[y} : 7 : 2) ;
GotoXY ((60 + (i-1)*9%9),24) ;
write {(coord [i]([e](z] : 7 : 2) ;

{ output ORIENTATION matricies to screen |

GotoXY ((2 + (i-1)*23),22) ;
write (trans (1][1]J({1] : 7 : 3};
write (trans [i]({1]([2} : 7 : 3);
write (trans [i]([11([3}) : 7 : 3);

GotoXY ((2 + (i-1)*23),23) ;
write (trans (i]([2]J([1] : 7 : 3);
write (trans [i][2}[2] : 7 : 3);
write (trans [i}({2][3] : 7 : 3);

GotoXY ((2 + (i-1)%23),24) ;
write (trans [i]({31(1] : 7 : 3};
write (trans [i][3][2} : 7 : 3);
write (trans [i]J[3]1(3) : 7 : 3});

for j := 1 to 6 do begin
GotoXY (73, 5 + j + (i-1)*7);
write (theta [1][j]*180/pi : 6 : 2);
end; | for j |
end; { for i |

clearscreen; { clear previous picture from
screen |

for i := 1 to 2 do begin
135

S IR e T e P
i B N A e,

- O ol nte s 68t ahe Tat" @ 200" 72’ ata” cla " nla’ ¢ gt 4ot R’ . [. .
Tl (4 (1 73 gha i - WLV WO W O " 8 0% A% e

drawIquad (coord [1]([1](x]),coord [i]({1][2],
coord [il[2][x]},coord [i][2}1[Z2));
drawIquad (coord ([i](2](x],coord [i](2](z],
3 coord ([il{3](x],coord ([i][31([z]});
‘S drawIquad (coord [i][3][x],coord [i)[31[z],
, coord [i][4]([x]),coord [i]([4]1[z)):
- drawIquad (coord [i] [4)([(x]).,coord [i][4])[z],
) coord [i] (5] (x],coord (il[5]1(z]);
drawIquad (coord (i] (5] ([x].,coord ([i][5][z],.
coord [i][6][x]),coord [i)[6]1[2]);
< circleIgquad (coord [i]([6] [x],
: coord [i]([6]([z], 2, 1);
drawIquad (coord [i]({6]([x].,coord (i)[6](z],
coord (il (7] ([x].,coord [il(7]1(z1);
drawIquad (coord [i][7][x]}.,coord [i]l[7])[z].
o coord {i] [8])[x],coord [i][8]([z});
! drawiquad (coord [i) [6][x].,coord [i][6]([z],
coord [i]([9])([x]).coord (il ([911[z]);
drawIquad (coord [i] (9] (x].,coord [i][9]1({z],
N coord [i]{10]([x]).,coord [i][10])([z]);
circlelIquad (coord [i)[10] [x].
coord [i][10])([z]., 1, 1);

N

end; { for i |
. end; { routine |

[tt*tt*ttt*t**t*t*t*t**t*tttt}

i PROCEDURE MulTran (var tranl, tran2, prod

- matrix2x4x4);

o

" { This routine multiplies two 2x4x4 matricies

' the trans matricies |

) var

X i, j, k, 1 : integer; { counters |

begin
for k := 1 to 2 do begin

oy for 1 := 1 to 4 do begin

A for j := 1 to 4 do begin

N prod [k]I[i)[3j) := 0.0;

for 1 := 1 to 4 do

, prod (k] (i]J([j] := prod [k]([i] (3] +
tranl [k](i]([1]*
tran2 [k1[1)[31;:

; end; | for j |

) end; { for i |

: end; | for k |

) end; { routine |

oY

N 136

4

N

)

DAL Sy AR AT : ROy R R e

lt*tt*ktt*‘ltt*t**tt*t*ﬁtttt*t}

{ This routine inputs the next Tro and returns the
2 robot's trans

var

prodl,
i, j :

begin { procedure

multran
multran
multran
multran

end; [routine

PROCEDURE InvTran (var tran,

| This routine calculates the inverse of the trans
matricies using the formulas developed in the

integer;

(Tinvrb, Tro,

PROCEDURE NexTran (var NexTrans : matrix2x4x4
Tinvrb, Transinit, Tro, Tinvinitro
matrix2x4x4);

matrix2x4x4;

prodl);
Tinvinitro, prod2);
Trb, prod3);
Transinit, NexTrans);

!**ti*!t*tt***ti*ti***t*t*i*t}

Lee Tutorial pg 51 |

var
i, 3., k
sum : real;

begin |

integer;

for i := 1 to 2 do begin

for j
for k

end;

end: |

for i

for j
sum
for k

sum

end;

for j

..... .-
\\."\\'.' ~ e

1l to 3 do begin
1l to 3 do
invtran [i] [j] [k]

n i

‘1’to 3 do
sum + tran (i) [kl [j]l=*tran
invtran [i](j] (4]

Hilor

1 to 3 do
invtran {i][4]1 (3]
invtran [1]{41](4]

ol |

:= tran [(i] (k] ([3]:

o 2 do begin
to 3 do begin { trans inverse

= —sum;

.0

.
!

0
0

137

A m et e .- i
" N--,"\' .-I~.'\-.\- ._-’.‘-"_: oy
Y. BV, 0

'U¥I ey

L]
. "."!}‘}ﬂf* n'.‘ d

ﬁ/«'

‘-
-

Jaaes

e v

invtran : matrix2x4xd4d

.-,.,
FRERS
0 - %

5

L}

boa_mgtgeae
PR
St e

“p &,

[k . LI

{ rot inverse

,,
A
P B _s_9v P ¥

ANE N .9 Y

(. RGN o N M s 4

(i) (k1 (4);

Pl

“y

5 *s 'y
LS

VA
‘.‘

AT A At
e N . »

gt AT AR AR AR T R RN S AP X X e (N Ty € et et St got .

.....................

:.r

R

]
A
end; (for j | :'
end; | routine | w
lttttt**ttk**ttttt**ttt*t*kt*, J._
PROCEDURE DrawBox (Tro : matrix2xdx4); %ﬁ
P

{ This routine draws the box to be held by the f:
robots. |} WY
const ::l
scalel = 75; { n scale factor } I
scale2 = 35; (s and a scale factor | -
o

var

boxcoord : array [1..8, (x,2)] of real; ,
i, 3 : integer; ;;
.)
begin S'E
for i := 1 to 3 do begin ;
for j := 2 to 3 do B

Tro [1][i](3) := Tro [11([i)([j] * scale2; oy

Tro [1]1(i3(1] := Tro [1]([i] (1] * scalel; ,f
end; { for i | ;::
boxcoord [1]([x] := Tro [1][1]1[4) + Tro [1][1][1] + &1
Tro ([1]1({1](2]: -
boxcoord [1]([z] := Tro [1][3]1([4] + Tro [1]}[3](1] + ~
Tro (11(3]1(2]; i
boxcoord [2][x] := Tro [1]1[1])[4]) + Tro [1]I[1](1] - ﬁﬁ
Tro [1](1]([2]); !
boxcoord [2]({z] := Tro [1][3][4] + Tro [1]1(3]I[1] - 0
Tro (11(31(2]; h‘

boxcoord [31[x] := Tro [1}[1]1[4] - Tro [1][1][1] - 3
Tro [1](1](2]); »

boxcoord [3][z] := Tro [1](31([4] - Tro [1]1([3]1({1] - i
Tro [1]1[3][2]; it

boxcoord [4](x] := Tro ([1][1]1[4] - Tro [1][1][1] + =
Tro [1][1][2]; N

boxcoord ([4]1[z] := Tro [1](3]1[4] - Tro ([1](3](1] + o

Tro [1]1([3]([2);)

>

boxcoord (5] (x] := boxcoord (1][x] + Tro [1][1][3]; -i
boxcoord [5])][z] := boxcoord [1])[z] + Tro [1]I[3][3]: 3
Ny

boxcoord [6][x] := boxcoord [2][x] + Tro [1]([1]1(3); :5

boxcoord [6][z] := boxcoord (2]{z] + Tro [1]1([3]1(3]:)
74
138 e:
s

$\

4

q>
Ll

PR
« 8.

boxcoord (7] [x]
boxcoord [7][z]

boxcoord [3]([x] + Tro [1]1(1]1(3];
boxcoord [3]1[z] + Tro [11([3]1([3];

boxcoord [8] [x]
boxcoord [8]([z]

boxcoord [4)[x] + Tro [1]1([1]1(3]);
boxcoord [4]([z] + Tro [1](3]1(3];

o

drawIquad (boxcoord [1][x],boxcoord [1]{z],
boxcoord [2][x],boxcoord [2][z]):;
drawIquad (boxcoord [2] [x].,boxcoord ([2])([z],
boxcoord (3] ([(x],boxcoord [3]1[z]);
drawIquad (boxcoord [3][x].boxcoord [3][z],
boxcoord [4] [x],boxcoord [4]([z]);
drawIquad (boxcoord [4][x],boxcoord (4] (z].
boxcoord [1] [x]),boxcoord [1]I[z]):
drawlquad (boxcoord [1][x].boxcoord [1](z],
boxcoord [5] [x],boxcoord [5](z]);
drawIquad (boxcoord [2] [x].boxcoord [2]({z].
boxcoord [6] [x],boxcoord [6][z]);
drawIquad (boxcoord [3]([x],boxcoord ([3]([z],
boxcoord [7][x],boxcoord [7](z]):;
drawIquad (boxcoord [4][x],boxcoord [4][z],
boxcoord [8][x],boxcoord [8][z]):
drawIquad (boxcoord (5] ([x},boxcoord [5]([z],
boxcoord [6] [x],boxcoord ([6][z]):;
drawIquad (boxcoord [6][x],boxcoord [6][z],
boxcoord [7] [x].boxcoord [7]1([z]);
drawIquad (boxcoord (7] (x],boxcoord [7](2z],
boxcoord [8] [x],boxcoord ([8][z]);
drawIquad (boxcoord [8][x],boxcoord [8]([z],
boxcoord [5] [x],boxcoord [5][z]);
circleIquad (Tro ([1][1]1(4], Tro (1](31(41, 2, 1};

end; { routine |

(tttttttt*t*i**t**t****t**tt*;

PROCEDURE ThetalIncr (theta, thetanew : vector2xé6;
var incr : vector2x6;
var steps : integervr);

| This routine calculates the increment for the
thetas given the initial and final theta
vectors. The increment of the largest
change will be approx 5 degrees. |

var
i, j : integer;
maxdiff : real;
diff : vector2x6;

139

b R AP T N I T Tt T T, - P e a"a "a%e "o M AT R Mt A B A e . .t e e w o m .
J'l.‘l'\l"d'“.‘,',‘f._.‘.. RN AU TR RSN _-._ o -. LI g », -. ~ " '-,\'_-.,(’_./-.’.(..;.” .l_.’-.f-_' TN

begin { routine i
maxdiff := 0.0;
for i := 1 to 2 do begin
for j := 1 to 6 do begin
diff [i](3] := thetanew [i][]j]

end; { for j |
end; { for i 1}

to 2 do begin
1 to 6 do

for i
for j

end; { for i }
end; { routine |

‘*ttt**tttiii*tit**t*******t*}

PROCEDURE DrawObst;

if abs (diff [i][j}) > maxdiff then
maxdiff := abs (dif. [1]{j});

steps := round (maxdiff / (10*pi/180));
=1

incr [i]({3j] := diff [il(j])/steps;

(i1 (3}

{ This routine draws the obstacle for avoidance

begin { routine |
drawIquad (250,60,270,60);
drawlIquad (270,60,270,40);
drawIquad (270,40,250,40);
drawIquad (250,40,250,60);
end; | routine |

‘kittt*t*i**ﬁ***ﬁ**t*tt*ti*t}

PROCEDURE DrawObstl;
[Draw obstacle with shadow |}

begin { routine |}
drawIquad (210,130,375,130);
drawlIquad (375,130,375,70);
drawIquad (375,70,315,70);
drawIquad (300,70,240,70);
drawIquad (240,70,240,10};
drawIquad (240,10,210,10};
drawIquad (210,10,210,130);
drawIquad (210,95,300,95);
drawIquad (300,95,300,790);
drawIquad (315,70,315,10);
drawIquad (315,10,240,10);

fillshape (215,120,1,1); { £fill obstacle
screen coord

140

TN LT TR e e e N N et Lt e e e e fe)t Lt e . . PO N R R PO
AN . R N I A N AT AT A T T P T T P
o ORI,

(units in

..\J_'\-"\ \"'\.

[}

{) ,1 'jvat "- ”

AL RN

Ny Ty Bpa™ g0 Abe pre)

&
)

I'd
Y

v

e S T

AN

AW

Capl Pd
@ I

{yih

e

v v

R ANy

eV L

l.‘-'.".
k)

' S ’.,."‘,

Is A‘.

AU
2127,

2
l‘

EAS

S T 2P
*x %5 S v S

.

- » ...l -
ﬁfliﬂﬂc IR

AT L A AN gV p AT Wt g Yy A oA Sl e Tt At Al S s ot pu

' T T e ST e e Y e L L L e e Ve T b T a¥ 0 m \l [- W e T et e T WY
‘»

N

~

;_

'

4

-, end; [routine |

; lttiiﬁtiiﬁtttt*ttt*iit*‘kt**t}

\

A

- PROCEDURE DrawBox2 (trans : matrix2x4x4);

~a
Ji { This routine draws a box for one robot to hold |
v const

" scalel = 25; | n, s, and a scale factor }

;f var

. boxcoord : array [1..8, {(x,z)] of real;

i, 3 : integer;

:; begin | routine }

.

N for 1 := 1 to 3 do begin
o~ for j := 1 to 3 do

1 Trans [1]{i]({j] := Trans [1][i]([j]*scalel;
. end;
[0 trans [1][11(4] := trans [1][1]([4] + 200.0;
25 trans [1)(3)1[4] := trans [1]([3]([4] + 137.08;
. boxcoord [1]([x] := Trans ([1][1][4] +

Trans (11([1]1([1]1+
. Trans [1]([1]1([2]);
.. roxcoord [1){z)] := Trans [1][3][4] +
Trans (1} [3][1]+
Trans [1](3](2];

: boxcoord [2][x] := Trans [1][1]1([4] +
- Trans ([1](1](1] -
< Trans (1](1](2];
= boxcoord [2][z] := Trans [1][3][4] +
Trans [(1]([3](1] -
Trans (1) (31([2]);

boxcoord [3]({x] := Trans [1][1][4] -
Trans (1)}({1]1(1] -
Trans [(1][11(2];

boxcoord (3]1(z] := Trans (1](3]1({4] -
Trans [1][3][1] -
Trans [(1)({3](2];

e boxcoord (4] [x] := Trans [1]1[1]1[4] -
" Trans {1][1]}(1] +
Trans [1]({1](2);

b s 141

n, CAEA R LGN A AN NN g <4 R YV A W T W Y LS aA 0 g/t g8e~ ol gD e rate g Aas e natin) ghR- 00" ol et gl s e’ le"

f'r""r{;v‘

/ Pt ia b ey

AT e P

-').‘..l..'"'-'l— \-‘

.

'y

A

boxcoord (4]{z] := Trans [1](3]({4] -
Trans [1][3][1] +
Trans [1](3][2);

boxcoord ([5][x] := boxcoord [1][x] + Trans [1][1])I[3):
boxcoord [5][z] := boxcoord [(1]}[z] + Trans [1][3}[3];
boxcoord [6][x] := boxcoord (2] (x] + Trans {1]1(11(3]):
boxcoord [6])[z] := boxcoord [2][z] + Trans [1]([3]([3]
boxcoord [7]([x] := boxcoord ([3]([x] + Trans [1]([1]1(3];
boxcoord {7]([z] := boxcoord [3]1([z] + Trans [1][3])([3]:
boxcoord (8] [x] := boxcoord [4](x] + Trans [1][1](3];
boxcoord (8] ([z] := boxcoord {4](z] + Trans (1]1([3]1(3]:;
drawIquad (boxcoord [1] [x],boxcoord (1][z],

boxcoord [2] [x],boxcoord [2]([z]});
drawIquad (boxcoord [2][x],boxcoord [2][z],

boxcoord [3] [x],boxcoord [3][z]):
drawIquad (boxcoord [3][x],boxcoord {31([z],

boxcoord [4] [x],boxcoord (4] (z]):;
drawIquad (boxcoord [4][x],boxcoord [4]([z],

boxcoord {1][x],boxcoord [1](z]);:
drawIquad (boxcoord [1][x],boxcoord [1l]([z],

boxcoord [5]([x],boxcoord ([5][z]):
drawIquad (boxcoord [2] [x],boxcoord ([2]1(z]},

boxcoord [6] [x],boxcoord [6]([z]):
drawIquad (boxcoord [3][x],boxcoord (3](z],

boxcoord [7][x] ,boxcoord [7][z]);
drawIquad (boxcoord (4] (x],boxcoord [4]([z],

boxcoord [8]([x],boxcoord [(8][z]):
drawIquad (boxcoord (5] (x],boxcoord [5][z],

boxcoord [6] [x],boxcoord [6](z]);
drawlquad (boxcoord [6][x],boxcoord [6]([2],

boxcoord [7] [x],boxcoord (7]I[z1):
drawIquad (boxcoord [7][x],boxcoord [7]([z].

boxcoord [8] [x].boxcoord [8]1([z]);
drawIquad (boxcoord [8] [x],boxcoord (8] ([z],

boxcoord [5]([x].boxcoord [5][z1):

end; { routine |
!****i*t***t***i******ltki*t,
PROCEDURE DrawSquare;

SO

{ This procedure draws the initial position
for the box to be held i

-

begin | routine |}

142

s Y Y Y s

= T

-------- I e e A A A e T A A e O W T TN
o & » G - N - . N . N N .. .| B . X . L) L

G
B

P oA 2
ey

’- “IIJ‘ -

»

e

,.

‘? -!('i J’."."‘.

» ‘Y.l'" lk’l‘
f
PPN

| o
.-_‘:‘ :.,‘..“-":-'_‘- .

-

~

o W LW LT T LT LT e T e T LT T TR Y e T T e B U e A - » 'l - " W W " »
F AP > . Wl PRI
AN AR ﬂﬂ*f"‘m ﬂth}\f ‘ ol o g &

drawIquad (128.66,43.65,178.66,43.65);

drawIquad (178.66,43.65,178.66,18.65);

drawIquad (178.66,18.65,128.66,18.65);

drawIquad (128.66,18.65,128.66,43.65);
end; ({ routine |

f*ktttt*t***t**************t*’

PROCEDURE RobMov (var theta : vector2xé6:;
thetaNEW : vector2x6;
var trans : matrix2x4x4;
var coord : matrix2x16x3;
var chars : vector2x3;
grip : boolean);

{ This routine moves the robots from a present
location (theta) to a new location (thetaNEW)
var
i, 3, k, steps : integer:
angle, max_angle : real:;
del_angle : array [1..2,1..6] of real;

begin
angle := 0.0; { calc maximum angle change
max_angle := 0.0;
for i := 1 to 2 do begin
for j := 1 to 6 do begin

angle := abs (theta [i][j] ~ thetaNEW [i](j]):
if (angle > max_angle) then

max_angle := angle;
end; { for j |}
end; { for i 1}

{ determine num of steps |

steps := round (max_angle/(20.0*pi/180));
for i := 1 to 2 do begin { calc angle change per
step |

for j := 1 to 6 do
del _angle [i]([j] := (thetaNEW [i](j] -
theta [il1[j])/steps;
end; | for i |

to steps do begin
1 to 2 do begin | perform movement }
:t= 1 to 6 do
theta {j]l[k] := theta [3j][k] +
del_angle [j](k]:
end; [for j !

calctran (trans,theta);

143

}

T S R ¥

A AR AN

'I' VA AN NN LW LY 2, ik W W WY LW W Pt w i s X M W . > 2le® Bt
%
:h
; coordinate (coord, trans, theta);
-: drawframe (trans, theta, coord):
if (grip) then
. drawbox2 (trans)
< else
. drawsquare;
2,
2 end; { for i |
"\,
o end; | routine }
-
oY
N begin { Program |
) hires; { set screen to high resolution |}
f\ hirescolor (15); { set color for drawing |
fﬂ palette(3); { allows for draw command to
A still be active with
N graph.p included }
chars [1][1) := 1;
chars [2][1] := 1; { shoulder left condition |}
- chars [1][2] := 1;
[chars [2][2] := 1; { arm - up condition |}
. chars [1](3] := 1;
» chars [2][3] := 1; {f no-flip condition in wrist |
L for 1 := 1 to 2 do begin
- theta [1][1] := 0.0; { initialize HOME thetas]}
o theta [i][2] := 0.0;
\ theta [1i][3] := 0.0;
T theta [i]([4] := 0.0;
DA theta [i]([5] := 0.0;
o theta [i][6] := 0.0;
y end; { for i |
-
. { initialize matricies to zero |
for i := 1 to 2 do begin
o for j := 1 to 4 do begin
S for kK := 1 to 4 do begin
- Trb [i]1[3]1 (k] := 0.0:
K- Tinvrb [i]1([j){k] := 0.0;
08 Nextrans [i][j]l (k] := 0.0;
Tro [1]1(3j]1[k] := 0.0:;
" Tinvinitro [i](jl1[k] := 0.0;
:j TroEND [1i](j) (k] := 0.0;
- end; | for k |
. end; { for j |
" end; { for i |
144

AP SR

oo

- - - - - - - - . P N - - - - - - - - - - - . - - . . '] - . p » - - -

{ set all diagonal elements to one |
for i := 1 to 2 do begin
for j := 1 to 4 do begin
Trb [1][3][j} := 1.0;
Tinvrb [i])[3j])({j] := 1.0:
end; | for j |
end; | for i }

{ set other constant elements of T matricies |}

Trb (1]1(1]1([4] := 200.0;
Trb [111(3]([4] = 137.08;
1 Tinvrb [1]1(1)[4] := -200.0;
4 Tinvrb [1]1[3]([4] := -137.08;
Trb [2][1][4] = 400.0;
Trb (21(31{4] := 137.08;
Tinvrb [21[11[4] := -400.0;
Tinvrb [2][3]([4] := -137.08;
Border (5,5,635,195,160,555); { draw border |
GraphWindow (6, 6, 554, 159); { setup working window i

{ draw initial configuration |}
CalcTran (trans, theta);
Coordinate (coord,trans, theta);
DrawFrame (trans, theta, coord);

RobotID := 1; { initialize robot choice toggle |

while inkey <> #27 do begin
FLAG1:
read (kbd, inkey):
3 if (inkey = #27) and keypressed then
read (kbd, inkey);
case inkey of

#120 : goto FLAG7; | alt-keys functions |}
3 #121 : goto FLAG2;
. #122 : goto FLAG2;
#1223 : goto FLAG2;
#124 : goto FLAGZ2;
#125 : goto FLAG2;
#126 : goto FLAG2;
#127 : goto FLAG2Z;
#1123 : begin
if (RobotID = 1) then RobotID := 2
else RobotlID := 1;
end;
145

Nadods N R N N NSNS T e e e 0 T AT AT A T T AT A A
A . d 0 o] "

Ao ARt RS art gu s et fas v auh due 4 e
DR AR YA AL N /R Aot S il

#59 : begin | F1 }
theta [RobotID][1l] :=
theta [RobotID] (1] +
10*pi/180;
CalcTran (trans,theta):
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);
end;
#104 : begin { ALT-F1 |
theta [RobotID]([1] :=
theta [RobotID][1]-
10*pi/180;
CalcTran (trans,theta);
Coordinate (coord, trans, theta);
DrawFrame (trans, theta, coord);
end;

#60 : begin | F2 }
theta [RobotID][2] :
theta [RobotID][2]}+
10*pi/180;
CalcTran (trans, theta);
Coordinate (coord,trans, theta);
DrawFrame (trans, theta, coord);

end; 5
#105 : begin | ALT-F2 } %
theta [RobotID] (2] := o0
theta [RobotID][2]- N\
10%pi/180; N
CalcTran (trans,theta); Ry
Coordinate {coord, trans,theta); ‘
DrawFrame {(trans, theta, coord); -~
end; .:'
)
#61 : begin { F3 |

theta [RobotID]([3] :=
theta [RobotID][3]+
10*pi/180;
CalcTran (trans,theta);
Coordinate (coord,trans, theta);
DrawFrame (trans, theta, coord):
enq;

’Y ,’), ¥

a1z

Lo e
P)
r x5

#106 : begin { ALT-F3 |
theta [RobotID]} (3] :=
theta [RobotID][3]-
10*pi/180;
CalcTran (trans, theta);
Coordinate (coord,trans, theta);

146

& B A R L P Fm WL FU NG LK WY RN R dotad: a8 b A B b

.
&y

i V"i & %

2,

DrawFrame (trans, theta, coord);
end;

#62 : begin { F4 }
theta [RobotID] [4] :=
theta [RobotID][4]+
10*pi/180;
CalcTran (trans, theta);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);
end;

AP R P e
< h
! .

e

#107 : begin { ALT-F4 | .
theta [RobotID] (4] :=

theta [RobotID] [4]- >

10*pi/180; ’

CalcTran (trans, theta); v

Coordinate (coord,trans, theta);

DrawFrame (trans, theta, coord);

o
-

end; }

#63 : begin { F5 | i
theta [RobotID][5] := .f
theta [RobotID] [5]+ Yy
10*pi/180; "
CalcTran (trans,theta); D'
Coordinate (coord,trans,theta); w3

DrawFrame (trans, theta, coord): =

end; o

\vf

\J‘

#108 : begin { ALT-F5 |} o
theta [RobotID]([5] := :

theta [RobotID][5]- "

10*pi/180; ~

CalcTran (trans,theta); K,

Coordinate (coord,trans,theta); Q
DrawFrame (trans, theta, coord); 9
end; o

"‘\

#64 : begin [F6 | k-
theta [RobotID]I[6] := :\

theta [RobotID][6]+ -

10*pi/180; ;
CalcTran (trans,theta); “J

Coordinate (coord,trans,theta); {

DrawFrame (trans, theta, coord): o

end; .

#109 : begin { ALT-F6 | <
theta [RobotID] (6] := -3
theta [RobotID][6]- Vo
147 e
' i

8

i

&

\'

e e e T e e L o ol e e (o AL T L v 0 e X

Ty

. . Tty

AT I T

10*pi/180;
CalcTran (trans,theta);
Coordinate (coord,trans, theta);
DrawFrame (trans, theta, coord);
end;

begin { HOME |
trans [RobotID][1][4] :=

!
1

,i

e ."-‘-4 _ ‘--_'-.,'-‘ |

&

LS

“a

trans [RobotID][1]([4] - 10.0;

InvKin (theta, trans, chars);

Coordinate (coord,trans,theta);

DrawFrame (trans, theta, coord):
end;

begin { PGUP |
trans [RobotID](1]([4] :=

L4

s '.,.‘x.,vln)

trans [RobotID][1][4] + 10.0;

InvKin (theta, trans, chars):

Coordinate (coord,trans, theta);

DrawFrame (trans, theta, coord);
end;

begin [LT ARROW }
trans [RobotID] (2] (4] :=
trans [RobotID][2]([4] - 10.0;
InvKkin (theta, trans, chars);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);
end;

begin { RT ARROW |}
trans [RobotID][2][4] :=
trans [RobotID][2][4] + 10.0;
InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord);
end;

begin { END |
trans [RobotID] [3][4] :=
trans [RobotID][3][4) - 10.0;
Invkin (theta, trans, chars);
Coordinate (coord,trans, theta);
DrawFrame (trans, theta, coord);
end;

begin [PGDN |
trans [RobotID] (3] [4]) :=
trans [RobotID]{3](4] + 10.0;
Invkin (theta, trans, chars);
Coordinate (coord,trans,theta);

148

P D LA

LR 2T T Y

T
77

4 S

~ o r

L T e

AL AL AL SEREY At

D

l,l'l 4&"."'-‘%"’

'V 5 X

~ .
AN

A, M S P S TR T T S R e T T T e

pe. VoW Paltat At 04® tnt et e, 0 A% 0°d et 290 gy A% P et e e taly - Savagt

A A A

A AP

s

-~

o

DrawFrame (trans, theta, coord); N

end; o

»

#68 : halt; | F1l0 - terminate program | "

end; {casej t
end; [while} o

[t****ﬁk**t***********t****t}

[x*xxxx*xxx ROUTINE 1 *%} :§
{ drilling operation |} ;Z
FLAG7: NS
gotoxy (2,2); write ('PHASE I'}; :.
{ hover |} { ready to drill | '
thetaNEW [1][1] = -2.618; thetaNEW [2]([1] = -2.385; ﬁ
thetaNEW [1][2] := -0.524; thetaNEW (2]([(2] := 0.363; ;h
thetaNEW [1])[3] := 0.524; thetaNEW [2][3] := ~0.023; N
thetaNEW [1][4] := 0.0; thetaNEW [2][4] := -2.431; i‘
thetaNEW [1][5] := 0.0; thetaNEW [2][5] := 1.835; s
thetaNEW [1][6] = ~-1.047; thetaNEW [2][6] = -2.877; v
RobMov (theta, thetaNEW trans, coord, chars, false); o
=

gotoxy (2,2); write ('PHASE II'); { pick up | ;ﬁ
for 1 := 1 to 5 do begin !;
trans [1]1[3][4] := trans ([1]([3][4] - 10.0; RO
InvKin (theta, trans,chars); ey
Coordinate (coord,trans,theta); o
DrawFrame (trans,theta,coord); .
DrawSquare; g
end; { for 1 | :'
-

gotoxy (2,2); write ('PHASE III'); 23
{ hover again } { same |} i
thetaNEW [11([1] := -2.618; thetaNEW [2][1] := -2.385; Ay
thetaNEW [1][2] = -0.524; thetaNEW [2][2] = 0.363; »
thetaNEW [1][3] = 0.524; thetaNEW [2] [3] = -0.023; by
thetaNEW [1][4] := 0.0; thetaNEW [2] (4] := -2.431; :
thetaNEW [1] [5] = 0.0; thetaNEW [2] [5] = 1.835; -
thetaNEW [1][6] := -1.047; thetaNEW [2][6] := -2.877; :
RobMov (theta, thetaNEw trans,coord, chars, true), .
gotoxy (2,2); write ('PHASE IV'}); g;
{ move to vice position | { same | :
thetaNEW [1]([1] := -0.721; thetaNEW (2] (1] := -2.385; -
thetaNEW (1][2] := 0.284; thetaNEW (2](2] := 0.363; i
thetaNEW [1][3]) := -0.649; thetaNEW [2][3] := -0.023; o
thetaNEW [1] [4] = 2.387; thetaNEW [2] [4] = -2.431; Y
.:\
149 4

-

>

)

el
i

970, 1

.':&{ - -'-.’-'-’...ra " v-,-'-(-‘ -J‘J' ;f‘ ")"-,I"i'"u"‘l"{“ .\:’)- ".h -’5,'(' (~n -. @ -F‘I"‘."J"*-J'-*'J"f‘fnl"-*.f- ’-‘g X

-

RN

P e

A

<
Sl

N

'

‘. L]

oY
X thetaNEW ({1][5] := 1.300; thetaNEW [2][5] := 1.835;
Q; thetaNEW [1][6]) := -2.895; thetaNEW (2] (6] := -2.877;
; RobMov (theta,thetaNEW, trans,coord,chars, true);
n‘“
B~ gotoxy (2,2); write ('PHASE V');
~ (stay in vice position | { drill }

o thetaNEW [1][1] := -0.721; thetaNEW [2][1] := -2.752;
o thetaNEW ({1](2] := 0.284; thetaNEW ([2][2] := 0.294;
: thetaNEW [1][3] = -0.649; thetaNEW [2][3] = -0.208;
] thetaNEW [1][4] := 2.387; thetaNEW [2] [4] := -2.826;
o thetaNEW [1]([5] := 1.300; thetaNEW [2][5] := 1.655;
J: thetaNEW [1]1([6] := -2.895; thetaNEW [2][6] := -3.070;
- RobMov (theta, thetaNEW, trans,coord,chars, true),

' gotoxy (2,2); write ('PHASE VI'):

. { stay in vice pcsition | { retract drill |
15 thetaNEW (1][1] := -0.721; thetaNEW [2][1] := -2.385;
N thetaNEW [1]([2] := 0.284; thetaNEW [2]{2] := 0.363;
: thetaNEW (1] (3] = -0.649; thetaNEW [2]([3] = -0.023;
. thetaNEW [1}[4] := 2.387; thetaNEW [2][4]) := -2.431;

thetaNEW [1][5) := 1.300; thetaNEW (2] ([5] := 1.835;

Y thetaNEW [1][6] := -2.895; thetaNEW [2][6] := -2.877;
}: RobMov (theta, thetaNEw trans,coord, chars, true),
b

-~ goto FLAGI;
b { end of routine drill |}

o FLAG2: { routine IN MAIN to lead robots through specified
'}é movement |
N
L { set thetas to an appropriate starting point |}
A theta [1]([1] := -0.5123; theta [2]){1] := -1.7703;

e theta [1][2] = 0.1847 ; theta [2][2] = 0.1833;

“n theta [1)([3] := -0.8479; theta [2][3] := 0.3838;
B theta [1]1(4] := 0.0; theta [2][4] := 0.0;
N theta [1][5] := 0.6632; theta [2][5] := -0.5671;

:f theta [1][6] = -0.5123; theta [2][6] = -1.7703;

{ robot initial postition |

: CalcTran (trans,theta);

- Coordinate (coord,trans,theta);

N DrawFrame (trans, theta, coord);

{ set transinit mx to trans mx |

-t transinit := trans;

o

2 for k := 1 to 2 do begin

o for i := 1 to 3 do begin { initialize Tro |

. for j := 1 to 3 do

3 Tro (k] (i] (3] := trans [1](i]1(3l]:
o~ 150
:,-
-
v |
& |
?.r':*'-*':‘. '.»".f‘.f'.. RS A '.r‘.!'-.r.‘.-(. VT ‘

PRI ‘\\\‘-‘\. % \%\‘N

o -« \ N\ 3(\-(“ .r.‘.r\- TN
N it M N o N 1.V, A

YT

Tro [k]1[4]1([1i] := 0.0;
end; { for i 1|
Tro [k][1][4) := 377.3;
Tro [k][2][4] = -40.18;
Tro [k][3][4] := 50.47;
Tro [k][4][4] := 1.0;

end; { for k |

{ calc Tinvinitro for nextran |}
InvTran (Tro, Tinvinitro);

DrawBox (Tro); { draw initial box |
(xxxxxxx%x ROUTINE 2 **}
if inkey = #121 then begin [alt-2 key)

{ linear movement without node search
- no obstacles |}

px := Tro [1](1][4] - 50.0;

{ run through movement routine)}
for i := 1 to 5 do begin
for j := 1 to 2 do
Tro [j1(1](4] := Tro (jl[1)({4] - 10.0;

{ calculate next trans and draw robots |}
Nextran (Trans, Trb, Tinvrb,
Transinit, Tro, Tinvinitro);
InvKin (theta, trans, chars);
Coordinate (coord,trans,theta);
DrawFrame {(trans, theta, coord);
DrawBox (Tro);
{ indicate Tro }
CircleIquad (Tro [11[11([4].Tro [1]1([311[41.2.,1);
CircleIquad (px, Tro [1]11(3]}1[41.,2.1);

end; { for i |
end | else if }

{tk****tti ROUTINE 3 *tl

else if inkey = #122 then begin { alt-3 key |
{ increase theta 5 of 30 degrees with trans being
incremented |}
for i := 1 to 2 do begin { set final position

TroEND [i][11[4] := 340.0:
TroEND [i][2][4] := -40.0;

151

'.‘.,.‘_:‘._-_'_.-.‘. ,:'...-'\.-". . '-.._._’.‘;_-\...‘_-_'_:_--._.‘:._.\-_._-“.\:_. ‘..\.', RN -‘..:’ AR S e et -'.\._’ --
o W,

Qo at . g%t o S ™ g Qe il a3 L LB A Lad v W

]

%

LA AN

BICC AN ol et e A R Sy

Ry

N A
-2,

=

A

vy

L% B2 % % 2y

. 4
~
3.

b o B N

>

T LI

A
Y.

>

’.l' .&. .l‘..l

o A

’
hd

o f 4

PRAIT

l..l Pd

g
.

¥

A NA

-
7

‘Pl v L
g

.._-,.’.‘
P RO

. %

AP
y %

TroEND [i]([3)([4] := 80.0;
end; { for i |

{ calc Tinvinitro for nextran |

InvTran (Tro, Tinvinitro);

Step (numsteps,Tro,TroEND); { determine number of

steps for move |
{ calc the increment on r-p-y |

del_theta [5] := 30.0*pi/180/numsteps;

{ del x }

del [1] := (TroEND (1]1([1][4] -

Tro [1]([1][4])/numsteps;
{ del y |

del [2)] := (TroEND [1]1[2]([4]) -

AR

Tro [1]([2]1([4])/numsteps;

{ del z |
del [3] := (TroEND ([11([3]1([4] -
Tro [1][3])[4])/numsteps;
for i := 1 to numsteps do begin

{ calc rotation mx of Trol
ThetaTRO := theta;
ThetaTRO [1][5] := Theta ([1][5] + del_theta (5];
CalcTran (RotTrol, ThetaTRO);

for j := 1 to 2 do begin { set ROT mx of Tro
for k := 1 to 3 do begin
for 1 := 1 to 3 do
Tro [j][k][1l] := RotTrol [1]I[k]1I[1l];
end; [for k |
for k := 1 to 3 do { set translation mx <¢f Tro
Tro [j)][k]([4] := Tro [j)[k][4) + dell[k]):
end; { for j |

{ calc the robot's next trans mx's |}
Nextran (trans, Trb, Tinvrb,
Transinit, Tro, Tinvinitro);

{ calc robot positions and draw |
InvKin (theta, trans, chars);
Coordinate (coord,trans, theta);
DrawFrame (trans,theta,coord);

DrawBox (Tro); | draw in object |
{ indicate end position and reference point |
CircleIquad (Tro [1][1][4]),tro [1]([3][4],2,1);

CircleIquad (TroEND (1]1([1]T[4],
TroEND ([1](3]1(4]).2,1);

152

BT CAT TN A Ty NN e N N T e e
4 X

[T S P H) L. -
N P A A T A A N A O N A T

£

. .“l: .l ".l :

BT WY

" s Fre
SN

y
o

T I s,
l,. '.. L ;. ‘\."‘- "./‘-‘,5

—

Lo ve,

Ay Ry e ¢

P ETE
(I

%
s 8

A

A e a
TN

. JILRFLIRE

?'?}ik¥

LS '..'& °\

L oy
2

‘.;" *y

-

v,' l{‘v{’ 7. "

v
LSS L
A S8

]

AN Ny
A

g q - o e p y —
D E Y e NN A A LN SN A A : L R N e o R T N N W Y N T Y R > F P .

gl
Fd

y

Y

Y

.

7,

"H

7. end; { i }

end | if |

:: {xxxxxkxxx ROUTINE 4 **}

~

o else if inkey = #123 then begin [alt-4 key |
A

b { translation with roll (+30) and yaw (+20) |
’l

o rpy [1] := -pi;
o rpy (2] := 0.0;
- rpy [3] := 0.0;

§ for m := 1 to 2 do begin

>,

:f if (m=1) then begin { PHASE I of movement |
ff { initialize del_rpy !

- for i := 1 to 3 do

del_rpy [i] := 0.0;

;: for i := 1 to 2 do begin [set final position |}
§§ TroEND [(i]([1]([4] := 320.0;

~ TroEND ([i][2](4] := -60.0;

- TroEND [1i][3][4] = 60.0;

end; { for i 1|

ﬁ { determine number of steps for move |

o~ Step (numsteps,Tro,TroEND);
1{: { calc the increment on r-p-y |
e del_rpy [3] := 20.0*pi/180/numsteps;

) del_rpy [2] := 15.0*pi/180/numsteps;

= end [if |

“i else if (m=2) then begin { PHASE II of movement |}
.

. for i := 1 to 3 do

;i del_rpy [i] := 0.0; { initilize del_rpy |
\-
.:i for i := 1 to 2 do begin { set final position |
.:3 TroEND [i]({1](4])] := 290.0;
- TroEND [i][2][4] := -80.0;

a2 TroEND [i][3][4] := 70.0;
< end; [for i |
"J_'
Iy { determine number of steps for move |
N Step (numsteps,Tro,TroEND);
end; {if)

=

Nl
\
- 153

~,

...I)'-") - LN p . .--.", _’. M e Va 3 A-l'l. -_l\ K.\I.‘.'.‘..‘k‘. ~- ‘-", A RS

{ del x |
del [1] := (TroEND [1]([1]([4] -
Tro [(11([1][4])/numsteps;
{ del y |
del [2] := (TroEND [1][2][4) -
Tro [1]1{21([4})/numsteps;
[del z |
del [3] := (TroEND ([1]}1[3]1([4] -
Tro {1)([3]1[4])/numsteps;

for i := 1 to numsteps do begin
{ calc rotation mx of Trol

for j := 1 to 3 do { incr rpy angles |
rpy [j] := rpy [j] + del_rpy [3j]:

CalcRot (RotTro,rpy); [calc rotation mx of Tro |}
for j := 1 to 2 do begin { set ROT mx of Tro |
for kK := 1 to 3 do begin

for 1 := 1 to 3 do
Tro [j][k][1l] := RotTro [k]I[1];
end; { for k |

{ set translation mx of Tro |}
for k := 1 to 3 do
Tro [j1(k] (4] := Tro [j]l[k][4] + dellk];
end; { for j i

{ calc the robot's next trans mx's |
Nextran (trans, Trb, Tinvrb, Transinit, Tro,
Tinvinitre);

{ draw frame |
Invkin (theta, trans, chars);
Coordinate (coord,trans,theta);
DrawFrame (trans,theta,coord);
DrawBox (Tro);
CircleIgquad (Tro ([1]}([1][4]),tro ([1]1([3]1([4]),2,1);
CircleIquad (TroEND ([{1]([1]1[4],
TroEND [1](3](4].2.1);

end; { i |
end; { m |
end { else if }

[t*tt****t ROUTINE 5 **I

else if inkey = #124 then begin { alt-5 key |

154

PRI AL PR L A A P S At AT AT Y A LN e T N Tyt g™ " "™ “e w A fo s e Py .) =
N A A A AN A N A TR O AT RTRE R RS AP N A A AN A AT N A AN N AT NN '$'

Sy

el

X

,’

v '}’s?’s

S b]
b AR A N0 AR

.
»

PR
~ N
"o

-~
G

.

PR AP A
- %-

Py e N S T
P A,

Vhd

LN A]

P

L AT U T YR 8
P Sl PP A

R
yl'. Y 'r"v

" .l’ 4.. 5‘ l';-‘

4:)‘,.,"»

WA

AR

* l' -
U A

ChRATNSS

-

NPT
LA,

LA AR A |

LN s
RARA ol 4

Pl

R

')’I*J\}

A

LA

pX

4

e

end

" "
- - - - - - - - - . - - - ..‘

| linear translation with trans
being incremented , node search, no obstacles |}

Tro [{1]1(1][4] - 50.0; { final location |

{ run through movement routine |
or 1 := 1 to 5 do begin
for j := 1 to 2 do { increment Tro |
Tro [3j][1)(4) := Tro (3]1(1]1[4] - 10.0;

! draw the frame |
Nextran (Trans, Trb, Tinvrb,
Transinit, Tro, Tinvinitro);
InvKin (theta, trans, chars);
Coordinate (coord, trans, theta);

Node (collision,coord); | perform the node search |

{ a collision detected by Nodel
1f (collision) then begin
gotoxy (2,3);
write (' 'MOVEMENT HAS BEEN FROZEN'):;
exit;
end; { 1f |

{ draw the frame |
CrawFrame (trans, theta, coord):
DrawBox (Tro);
CircleIquad (Tro ([13([1]1[4]).Tro ([1]110[3][41.2.1);
CirclelIquad (px,Tro ({1](3]1(4]1,2,1)

nd; | for 1 |
| else if |

EEERER R ROQUTINE 6 t*l

else 1f inkey = #125 then begin | alt-6 key |

O

{ vyaw 180 degrees for node search failure |

rpy (1] := -pi;
rpy [2] := 0.0;
rpy [3] := 0.0;
for i := 1 to 3 do { initialize del_rpy |
del _rpy [i] := 0.0;
for i := 1 to 2 do begin | set final position |
TroEND [i](1] (4] = 300.0;
TroEND (i]({2])(4]) := -60.0;
TroEND [i][3])[4) := 80.0;
155

oy

S A A g g I gl Gy B L T RN R Y g L0t '5'§"'{*5I‘
- - B . N L) L)) o » . - . v

R e N OV o N N VR R U W T AT N R LV e e, DA A SN o e A

" end; | for i |
numsteps := 10;

. { calculate the change in variable |

: del_rpy [3] := -180.0*pi/180/numsteps;

, del [1] := (TroEND ([1]([1](4] -

. Tro [1][1][4))/numsteps;
del [2] := (TroEND (1])(2] (4] -

. Tro [1][2][4])/numsteps;

: del [3] := {(TroEND ([11[3][4]) -
. Tro [1]1[3])([4])/numsteps;

for i := 1 to numsteps do begin

g { calc rotation mx of Trol

! for j := 1 to 3 do { incr rpy angles |
‘ rpy (3] := rpy (3] + del_rpy [3j]:
CalcRot (RotTro,rpy): | calc rotation mx of Tro |
= [8
for j := 1 to 2 do begin { set ROT mx of Tro |} <
for k := 1 to 3 do begin .
for 1 := 1 to 3 do N
- Tro [3]1[k][1l] := RotTro [k]I[1l]; N
end; { for k | N
for k := 1 to 3 do { set translation mx of Tro |
Tro (3]1(k](4] := Tro {j]l([k] (4] + dellk]:
end; |{ for j |}

{ calc the robot's next trans mx's |
Nextran (trans, Trb, Tinvrb,
Transinit, Tro, Tinvinitro):
InvKkin (theta, trans, chars);
Coordinate (coord,trans,theta);

L
-
[y
..
“«
*w
*
LY

PR O MRS

o
o
1 Node (cellision,coord); { perform node search |
Y if (collision) then begin { stop movement if
. collision is to occur |}
N gotoxy (2,3);
s write ('MOVEMENT HAS BEEN FROZEN'):;
. goto FLAGL;
end; | if }
DrawFrame (trans,theta,coord);
. DrawBox (Tro);
CircleIquad (Tro [1]([1]1[4].,tro [1][3]1[4],2,1);
CircleIquad (TroEND (1]([1] (4],
TroEND [1](3](4].2,1);
. 156
. o
N
e A T P T 4 e S 0 S 0 L e S ST)

......

.........

end; { 1 1}
end { else if |

: [rxxkxkkkx ROUTINE 7 **}

LA LN

else if inkey = #126 then begin { alt-7 key |

linear x movement with upward obstacle
avoidance |

{

DrawObst; { draw in original obstacle |

LI

for i := 1 to 2 do begln { set final Tro |}
. TroEND [i]l[1]([1] 0.866;
: TroEND [i](1][2] -0.5; A

faels

-0.0;

v TroEND ([i][3][3]

TroEND [i]([3]1[4] 130.0;

r TroEND [i]([1]([3] := 4
TroEND [i][1]1([4] := 300.0; .
TroEND [i]1[2])[1] := -0.5;
TroEND [i][2][2] := -0.866; :
TroEND (i][2]([3] = 0.0; ?
TroEND [i]([2] (4] := -40.0; 2
A TroEND [i][3][1] := -0.0; N
TroEND [i][3][2] := 0.0; 0
= -1.0; .

A TroEND [i][4] [4] 1.0; K
end; .
.
kY

{ indicate end point 1
{TroEND [1][1)[4]),TroEND [1])[3])(4].2,1);

CircleIquad

{ calc the Trans of the end position
£ {({into nextrans) |} X
- Nextran (Nextrans, Trb, Tinvrb, Transinit, TroEND, X
Tinvinitro);

STEP (numsteps, Tro, TroEND); | determine the number
- of steps | _1
Y for i := 1 to 2 do begin { calc. incremental step | -
[for j := 1 to 4 do begin -
b for k := 1 to 4 do ~
Tiner [1][j1[k] := (Nextrans [i][3][k] -)
N trans (i](j](k]) / %
- numsteps; <
A end; 3 ! M
end; {1} -~
T2 := Trans; { set T2 (an itermediate dummy) 1

157

.......................
..................
............................

=
€
LY
¢
&
5
"

i
-
-

X0/

ol

for i := 1 to numsteps do begin { movement loop |

for j := 1 to 2 do begin { calc where desired

o

/) .
wLE

location T2 is |

[d

‘.

2

for k := 1 to 4 do begin
for 1 := 1 to 4 do
T2 (j1(k1(1] := T2 [jl(k](1] +
Tincr [j]1[k]I[1):

:ﬁ end; { for k |

j: end; { for j |

.r_:

“n. { calc dummy Tro coords for NEXT step |

px := 0.5*(200+T2 [1]1([1]}(4]+400+T2 [2][1][4]):

" py := 0.5*(T2 [1][2]1(4] + T2 [2][2](4));
b pz := 0.5%(133.08+T2 [1][3]1[4]+133.08+
ot T2 [2)[3)[4));
o
ﬂ { check to see if bar is in obstacle's range |
o if (px > 170.0) and (px ¢ 350.0) and { enlarged
= obstacle |
- (py > -135.0) and (py < 35.0) and
.3ﬁ {pz > 30.0) and (pz < 95.0) then begin
e { not as enlarged |
gotoXY (2,2); write ('AVOIDING OBSTACLE');
Sj { increment z coordinate to go up and over |
-7 Trans [1]{3][4] := Trans [1]([3](4] + 10.0;
~- Trans [2][3]([4] := Trans [2]([3]([4] + 10.0;
o~ Tro [1]1[31([4])] := Tro [1](31[4] + 10.0;
{ reset Tro z coord |
o Tro [2][3](4] := Tro [1][3][4]);
A
23 InvKin (theta, trans, chars):;
o Coordinate (coord,trans,theta);
DrawFrame (trans, theta, coord):
- DrawObst;
;;1 DrawBox (Tro);
Y
N { indicate end position |
. CircleIquad (TroEND [111[1]1([4],
' TroEND (1]{3](4].2,1);
<
W
{: goto FLAG3; | restart loop |
- end;
j: { calc trans and draw robots |
InvKin (theta, T2, chars);
~
" 158
>
\.
~l
"".

T A vy T T I A
e P AN NN,

[T -
W T O AL S

<

Sal S Ok Al MELELER TR L g

3 CalcTran (trans,theta); 2

X Coordinate (coord,trans,theta); .
DrawFrame (trans, theta, coord); 1

X DrawObst;

" { indicate end position |

CircleIquad (TroEND ([1]([1]([4],
TroEND [1][3](4).2,1);

Tro := trans; [reset Tro }
7 for 3 := 1 to 2 do begin { adjust Tro | :
y Tro {j1[11[4] := 0.5*(coord [1][6][x] + .
! coord [2)[6][x]); .
Tro [31[2]1[4] := 0.5*(coord [1][6][y]} + .
coord [2)[6)[y])): -
Tro [j1[31[4] := 0.5*(coord [1][6][z] + B
coord [2]1[6])[z]): r
end; { for j !} b
N ¢
- DrawBox (Tro): ”
o end; { for i |} N
¢ end | else if } ~
: ™
: [*rxrxkxx ROUTINE 8 %%} ;
; else if inkey = #127 then begin { alt-8 key |
{ movement withe intelligent obstacle avoidance |
DrawObstl: | draw in original obstacle with ‘
overhang |)
f - for i := 1 to 2 do begln { set final Tro |
v TroEND [i]([1][1] := 0.866;
TroEND [i]1(1)([2] := -0.5;
TroEND [i][11(3] := -0.0;
TroEND [1][1]([4] := 295.0;
TroEND [i][2]1[1] := -0.5;
p. TroEND [i][2]1[2] := -0.866;
5 TroEND [i]([2]1([3] := 0.0;:
. TroEND [i]([2]([4] := —-40.0;
. TroEND [1][3]1([1] = -0.0;
5 TroEND [i][3]1(2] := 0.0;
) TroEND [41]1(3}(3) := -1.0;
. TroEND [i]([3]1[4] := 160.0;
. TroEND [i]1[4]1(4] := 1.0; .
N end; K
n K
2 { indicate end point | .

CircleIquad (TroEND ([1](1]1([4].TroEND (11({31(4).,2.,1);

1.4

159

.............
" , , ,‘\,, .. _,-{.{-'.-,-’\ $‘_‘-\ Yy

e y A TN N
5 N AT AN ae » -~
~ > &IA

T 'S 0’0840 400

FLAG6:

{ calc the Trans of the end position

(in

Nextran (

STEP (num

for i :=

for j :
for k
Tinc

end; {

end; { £

T2 := Tra

for i :=

for j :

for k
for
T

end;
end; {

{ calc
PX 0
PY
p2z

0

movemen

movementy

movemen

for j :
if (3
pX

pz

movementx
movementz

end

0.

to nextrans) |}

Nextrans, Trb, Tinvrb, Transinit,

Tinvinitro);
steps, Tro, TroEND);

1t
= 1 to 4 do begin
:= 1 to 4 do

o 2 do begin | calc.

TroEND,

{ determine the
number of steps |

r [i][3)[k] := (Nextrans [i][3j] [k]
trans [1]1[3](k])
numsteps;

for j |
or i }

ns; | set T2 (an itermediate dummy)

incremental step |

/

1 to numsteps do begin [movement loop |

=1 to 2 do begin |

:= 1 to 4 do begin
1l :=1 to 4 do

calc where desired
location T2 is

2 [31[k1(1] := T2 [3]1(k]1[1] +
Tincr [j](k]([1];

{ for k |
for j |

dummy Tro coords for NEXT step |
.5%(200+T2 (1]1([1]{4]1+400+T2 [(2]1[2]11[4]);

5*(T2 ([1](2]([4] + T2 ([2](2]([4]);

.5%(137.08+T2 [1]([3]1[4)+137.08+

T2 [2][3][4]);
0.0
0.0
0.0

tx :

noun

~e e =~

tz

= 1 to 5 do begin

noH

px + 10.0;
:= pz + 5.0;
= 10.0;
= 5.0;
{ 1f |

{ Alternate Position 2 |

...............

160

.........

.....

}

{ initialize variables for loop |

2) then begin |{ Alternate Position 1 |

R
P s

.'\"i ’ﬁ {‘l' - .c.’g'f l.f ‘:‘ \r.;.: R 4

_
N

"",','Io'c’l
AR

Pl g o8 J
o) !

e 2ol
M

»
L

y N

~

.
v

S

» Ny “,“'-'.'-

I W B BT
v'l‘!'.' PP
LA IR Sl e)

” g,
‘ I‘-"ﬁ % |

. .',u, 7,

I.

“"hyy

TR A o S O
A 4

Iy

~

LS

i

~

N

else if (j = 3) then begin -
pz := pz - 15.0; f
movementz := movementz - 15.0; i'
end [else if | by
W,

! { Alternate Position 3 } 4
else if (j = 4) then begin b
pYy := py + 10.0; -

movementy := 10.0;

end | else if |} %
n

else if (j = 5) then begin { stop movement | v
gotoxy (2,2}); Q:
write ('movement frozen'); }‘
exit;)
end; { else if | |
[check to see if bar is in obstacle's range | it
if (px >= 208.0) and (px <= 382.0) and]
(py >= -135.0) and (py <= 35.0) and A
(pz >= 66.0) and (pz <= 135.0) then f
goto FLAG4 s
[enlarged obstacle |} ::'

P

else if (px >= 208) and (px <= 320) and Q:
(py >= -135) and (py <= 35) and R

(pz >= 8) and (pz <= 72) then goto FLAGA4 b

“

else begin }:

if (3 = 1) then goto FLAGS
else goto FLAGS;
end; | else |}
FLAG4:
end; | for Jj |

FLAGS:
gotoXY (2,2): write ('AVOIDING OBSTACLE');

[incr trans to intelligent movement |
Trans {1] (1] (4] T2 (1]1[{1]{4] + movementx;

AP hdi \v'.' '\';‘ LS T— :, *,)\.'\’\ ,t"l'.l,- P {.".

Trans [2][1]1([4]) := T2 [2][11[4] + movementx:
Trans [1][2][4] := T2 [1]1([2][4] + movementy;
Trans [2]1[2)1([4] := T2 {2])([2][4] + movementy;
Trans [1](3](4] := T2 {1]1(3](4] + movementz;
Trans (2][3]1{4] := T2 [2][3]1[4] + movementz;
InvKin (theta, trans, chars); { draw robots }

Coordinate (coord,trans, theta);
DrawFrame (trans, theta, coord);

Tro := trans; { reset Tro | :
161 N
X
!
b
;r
"
'-\

R }u. Sy \'-I'.‘- \’\}y) v)? . ‘-}\‘r"-._» .:.._--".}‘. '_. \."-".-".f'.' . “’Av._. el -'.:"' -"‘;"'L’- f‘.f"fsd'“f..-' \(..If‘ﬁun Tu,)
. D) 'y + 'y p IRV R n ! . !

W, 0,

s 5% Fa %)
1)

A nTa *"’f

for j :=

Tro (j1({2] (4]
Tro [3][3)[4]
end; { for 3

DrawObstl;

1 to 2 do begin | adjust Tro |}
Tro [j1([1]1(4] := 0.5%*(coord [1](6][x] +
coord [2)}[6]I[x]);
0.5*(coord [1]11[6][y] +
coord [2]([6])([y])):
0.5*({coord [1][6][2}) +
coord [2](6](z]};

DrawBox (Tro);
{ indicate end position |
CircleIquad (TroEND [1][1]([4],

goto FLAGS6;

FLAGS:

end.

TroEND [1]([3]([4].2,1);

restart loop !

InvKkin (theta, T2, chars); { draw robots |}
CalcTran (trans, theta):

Coordinate
DrawFrame
DrawObstl;

(coord, trans, theta);
(trans, theta, coord);

{ indicate end position |}
CircleIquad (TroEND [1][1][4],
TroEND [111[3]104].,2,1);

Tro := trans: { reset Tro }

for § := 1

to 2 do begin

{ adjust Tro

Tro [3]1[{1]1[4] := 0.5*(coord [1l][6][x] +

Tro ([3][2][4]

Tro [3]1(3] (4]

coord [2]1[6]([x]):
0.5*(coord [1])(6](y] +
coord [21([6])1[y});
0.5*(coord [1l]1[6][z] +
coord [2]1([6][z]):

end

end; { for j i

DrawBox (Tro);
end; { for j

{ else if

else
goto FLAGL;

goto FLAGl; |

CoordsSim |}

{ default if wrong alt code is entered |

after a routine is finished

162

}

v‘h v \{\‘?'1 - '\."r '(‘,\"*".@'}‘f‘}‘}‘*_'.ﬂ'('J",{l‘.((',p" 'h"-- q"-J‘-J,-
' '» . X o x s . X W Wy

NN I AR,

%

~

PR
e v
NN N

:S' .l"'::. N "'

A bt

.-"l’l5

«temig m Y

LAY

<

APPENDIX 2

USER'S GUIDE TO COORDSIM

163

s Al « X v

LS

R R TR JE NP

A A KA

A A DV B

P S

REAKMCGL AL

» A2.1 Introduction

'
o

The following 1is a wuser's guide which describes the

P

T use of the program "CoordSim". CoordSim is a computer
7 simulation written 1in TurboPascal (refer to appendix 1)
which graphically illustrates the coordination of two PUMA
robots.
Figure 6.1 is a sample output of the screen. It shows
'3 the location of the rotation matrices, joint angles, and
Wl
L)
o absolute positions of each robot along with a stick figure
¥y
ot] . .
which represents the center-line of the robot
.. .
:{ A2.2 Starting the Program
o~
4 1) Boot up the IBM PC with DOS version 2.0
2
<<
N or later.
>
,:-
<.
vy 2) Place the floppy disk containing the
o program "CoordSim.com" in drive A.
3
‘-..
\‘.'
f"a 3) At the "A>" DOS prompt type "CoordSim".
L
ij 4) The program automatically 1loads and
Ca
Y
:ﬁ initializes the robots' 1locations to a home
v
“u
4 position.
'\;‘
. \l. . -
o 5) RKeyboard input is now available as per
i? the folliowing sections.
7
.‘
N
v 164
]

AP A A A T A M A A N I A A R A A A A A oA R I A AT AR A AT AR R A A R N AL A

- 82 e - ola" - e olhB - o™ uka uba ¢
LS S e Vol Pl g

X

B D

—

GRIR

2 e
‘-ﬁfb;x
~

-f«"'

>

* pa¢ gat gac gav L4l e oy . -
ST AT AT A T AN e Na T uWa N e Tul, VoW, W, P W W W Wy Wy W W W LW W

A2.3 Teach Pendant

CoordSim has the ability to control a variety of

motions of each robot. Initially, the keyboard controls
robot 1. The first six function key control the six joint
angles of the robot (refer to figure A2.1). Pressing F1l

increases the theta 1 by 10 degrees, F2 increases the theta
2 by 10 degrees and so on up to F6 for theta 6. A decrease
in angle is obtained by pressing ALT-F1 for theta 1, ALT-F2
for theta 2 and so on up to ALT-F6 for theta 6. The toggle

to pass control to the other robot is the ALT-F10 key.

+THETA 1 F1l F2 +THETA 2
-THETA 1 -THETA 2
+THETA 3 F4 F3 +THETA 3
-THETA 3 -THETA 3
+THETA 5 F5 F6 +THETA 6
-THETA 5 -THETA 6
F8 F7
F9 F10 EXIT PROGRAM
ROBOT TOGGLE

* Press function key alone to perform the upper
function.
* Press ALT-function key for lower function.

Figure A2.1
Function Key Identification

165

Ca il Py P i i Co g P, _'.».r*'-<—,~,—,- T i e W -
A WA i A A (G R e L SR ANy AT SR CE ORI

u,

P
A~ ¥y ¥ 9

PIE P K PR

P

Pl

W P P . N 0t RO 8% 5A° 00 S B . AR e . bl \aftanang o0 e g o
o A Y N AL W VN O YN BOAN e Pyt B p O A Sl A pel A A ORI Sl 44" sl gty S e 520 "0 A RA RS A A

Along with Jjoint angle control 1is cartesian
movement control. In this case, the numeric keypad
controls the cartesian movement of the end effector. At
the keypad, the "7" and the "9" move the end-effector in
the negative and positive x-direction. The "4" and "6"
control the negative and positive y-direction. Finally,
the "1" and "3" <control the negative and positive z-

direction.

- A2.4 Routines

The eight routines described in chapter 6 are started
by pressing the ALT key along with the number of the

specific routine desired. For example, routine 4 would be

started by pressing the ALT-4 key. Each of these routines

CNFT R AN YT v

can be started at any time while in CoordSim and the teach

L5 K

; mode is still effective after a routine is completed.

v oy

A2.5 General Information

£ a £ 2

SR

The program is exited by pressing the F10 key.

v .
18 ¢

PP e e e -
PRl | A Y
EASENA. Cata o

166

P T L L i S Y . .
L, X 7, .r -F~.' ' J' f’_\'f\f\.f\.‘\ \.' -(_‘- \J'._.r\.ﬂ_ d‘,\-l'\-l',\i'\-'_ - \. . J‘\.)'_ et S \.r_‘ AR .-\. \.. AT A Vo ,\. W
a

Pl ALl
(L
AN

rrEy!
-
Al
.n«
Yy
,
»
X
>,
X
.-
-
4
1]
[}
1
]
-
L o
»
]
a4
A
y 4
-]

‘-('n.',,.\- S A N R A S e e e Ll

>
|

RN R R LR A

@ NN rN s
3-\-\!\{\- \-\f\ N\ N o

PP ALY r)-\M AR

END

s

. .
FRPRERTAR B AN

CLRERTLE
AN
VI\ -. lI l- I-’&‘fl'
O

P AD

LN,

\ II Id \.\
A.smn.r. 7

h

s

]
s
L)

'3

A

»

Rt A AT AT T AT AT A A
P T \"'\\‘ ARG AR LAY >

-,

PR

e

'

N

SR

",

f

N

A

e

{I.;f‘:f

O

»

.

"

*

R A Ao

